42 research outputs found

    Forecasting daily attendances at an emergency department to aid resource planning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate forecasting of emergency department (ED) attendances can be a valuable tool for micro and macro level planning.</p> <p>Methods</p> <p>Data for analysis was the counts of daily patient attendances at the ED of an acute care regional general hospital from July 2005 to Mar 2008. Patients were stratified into three acuity categories; i.e. P1, P2 and P3, with P1 being the most acute and P3 being the least acute. The autoregressive integrated moving average (ARIMA) method was separately applied to each of the three acuity categories and total patient attendances. Independent variables included in the model were public holiday (yes or no), ambient air quality measured by pollution standard index (PSI), daily ambient average temperature and daily relative humidity. The seasonal components of weekly and yearly periodicities in the time series of daily attendances were also studied. Univariate analysis by t-tests and multivariate time series analysis were carried out in SPSS version 15.</p> <p>Results</p> <p>By time series analyses, P1 attendances did not show any weekly or yearly periodicity and was only predicted by ambient air quality of PSI > 50. P2 and total attendances showed weekly periodicities, and were also significantly predicted by public holiday. P3 attendances were significantly correlated with day of the week, month of the year, public holiday, and ambient air quality of PSI > 50.</p> <p>After applying the developed models to validate the forecast, the MAPE of prediction by the models were 16.8%, 6.7%, 8.6% and 4.8% for P1, P2, P3 and total attendances, respectively. The models were able to account for most of the significant autocorrelations present in the data.</p> <p>Conclusion</p> <p>Time series analysis has been shown to provide a useful, readily available tool for predicting emergency department workload that can be used to plan staff roster and resource planning.</p

    Fluctuating temperature modifies heat-mortality association around the globe

    Get PDF
    Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: −0.33 to 1.69), 1.34% (95% CI: −0.14 to 2.73), 1.99% (95% CI: 0.29–3.57), and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: −0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health. © 2022 The Author(s)Funding text 1: This study was supported by the Australian Research Council (DP210102076) and the Australian National Health and Medical Research Council (APP2000581). Y.W and B.W. were supported by the China Scholarship Council (nos. 202006010044 and 202006010043); S.L. was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (no. APP2009866); Y.G. was supported by Career Development Fellowship (no. APP1163693) and Leader Fellowship (no. APP2008813) of the Australian National Health and Medical Research Council; J.K. and A.U. were supported by the Czech Science Foundation (project no. 20–28560S); N.S. was supported by the National Institute of Environmental Health Sciences-funded HERCULES Center (no. P30ES019776); Y.H. was supported by the Environment Research and Technology Development Fund (JPMEERF15S11412) of the Environmental Restoration and Conservation Agency; M.d.S.Z.S.C. and P.H.N.S. were supported by the São Paulo Research Foundation (FAPESP); H.O. and E.I. were supported by the Estonian Ministry of Education and Research (IUT34–17); J.M. was supported by a fellowship of Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016); A.G. and F.S. were supported by the Medical Research Council UK (grant ID MR/R013349/1), the Natural Environment Research Council UK (grant ID NE/R009384/1), and the EU's Horizon 2020 project, Exhaustion (grant ID 820655); A.S. and F.d.D. were supported by the EU's Horizon 2020 project, Exhaustion (grant ID 820655); V.H. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046); and A.T. by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). Statistics South Africa kindly provided the mortality data, but had no other role in the study. Y.G. A.G. M.H. and B. Armstrong set up the collaborative network. Y.G. S.L. and Y.W. designed the study. Y.G. S.L. and A.G. developed the statistical methods. Y.W. B.W. S.L. and Y.G. took the lead in drafting the manuscript and interpreting the results. Y.W. B.W. Y.G. A.G. S.T. A.O. A.U. A.S. A.E. A.M.V.-C. A. Zanobetti, A.A. A. Zeka, A.T. B. Alahmad, B. Armstrong, B.F. C.Í. C. Ameling, C.D.l.C.V. C. Åström, D.H. D.V.D. D.R. E.I. E.L. F.M. F.A. F.D. F.S. G.C.-E. H. Kan, H.O. H. Kim, I.-H.H. J.K. J.M. J.S. K.K. M.H.-D. M.S.R. M.H. M.P. M.d.S.Z.S.C. N.S. P.M. P.G. P.H.N.S. R.A. S.O. T.N.D. V.C. V.H. W.L. X.S. Y.H. M.L.B. and S.L. provided the data and contributed to the interpretation of the results and the submitted version of the manuscript. Y.G. S.L. and Y.W. accessed and verified the data. All of the authors had full access to all of the data in the study and had final responsibility for the decision to submit for publication. The authors declare no competing interests.; Funding text 2: This study was supported by the Australian Research Council ( DP210102076 ) and the Australian National Health and Medical Research Council ( APP2000581 ). Y.W and B.W. were supported by the China Scholarship Council (nos. 202006010044 and 202006010043 ); S.L. was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (no. APP2009866 ); Y.G. was supported by Career Development Fellowship (no. APP1163693) and Leader Fellowship (no. APP2008813) of the Australian National Health and Medical Research Council ; J.K. and A.U. were supported by the Czech Science Foundation (project no. 20–28560S ); N.S. was supported by the National Institute of Environmental Health Sciences -funded HERCULES Center (no. P30ES019776 ); Y.H. was supported by the Environment Research and Technology Development Fund ( JPMEERF15S11412 ) of the Environmental Restoration and Conservation Agency; M.d.S.Z.S.C. and P.H.N.S. were supported by the São Paulo Research Foundation (FAPESP); H.O. and E.I. were supported by the Estonian Ministry of Education and Research ( IUT34–17 ); J.M. was supported by a fellowship of Fundação para a Ciência e a Tecnlogia ( SFRH/BPD/115112/2016 ); A.G. and F.S. were supported by the Medical Research Council UK (grant ID MR/R013349/1 ), the Natural Environment Research Council UK (grant ID NE/R009384/1 ), and the EU’s Horizon 2020 project, Exhaustion (grant ID 820655 ); A.S. and F.d.D. were supported by the EU’s Horizon 2020 project, Exhaustion (grant ID 820655 ); V.H. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046 ); and A.T. by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). Statistics South Africa kindly provided the mortality data, but had no other role in the study

    Ancillary human health benefits of improved air quality resulting from climate change mitigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Greenhouse gas (GHG) mitigation policies can provide ancillary benefits in terms of short-term improvements in air quality and associated health benefits. Several studies have analyzed the ancillary impacts of GHG policies for a variety of locations, pollutants, and policies. In this paper we review the existing evidence on ancillary health benefits relating to air pollution from various GHG strategies and provide a framework for such analysis.</p> <p>Methods</p> <p>We evaluate techniques used in different stages of such research for estimation of: (1) changes in air pollutant concentrations; (2) avoided adverse health endpoints; and (3) economic valuation of health consequences. The limitations and merits of various methods are examined. Finally, we conclude with recommendations for ancillary benefits analysis and related research gaps in the relevant disciplines.</p> <p>Results</p> <p>We found that to date most assessments have focused their analysis more heavily on one aspect of the framework (e.g., economic analysis). While a wide range of methods was applied to various policies and regions, results from multiple studies provide strong evidence that the short-term public health and economic benefits of ancillary benefits related to GHG mitigation strategies are substantial. Further, results of these analyses are likely to be underestimates because there are a number of important unquantified health and economic endpoints.</p> <p>Conclusion</p> <p>Remaining challenges include integrating the understanding of the relative toxicity of particulate matter by components or sources, developing better estimates of public health and environmental impacts on selected sub-populations, and devising new methods for evaluating heretofore unquantified and non-monetized benefits.</p

    Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19: a three-stage modelling study

    Get PDF
    Background: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000–19. Methods: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° from 2000–19. Temperature variability was calculated as the SD of the average of the same and previous days’ minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. Findings: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901–2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2–4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7–5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3–10·4), followed by Europe (4·4%, 2·2–5·6) and Africa (3·3, 1·9–4·6). Interpretation: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. Funding: Australian Research Council, Australian National Health & Medical Research Council
    corecore