227 research outputs found

    Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Get PDF
    The mechanisms controlling human mesenchymal stem cells (hMSC) differentiation are not entirely understood. We hypothesized that the contact with extracellular matrix (ECM) proteins normally found in bone marrow would promote osteogenic differentiation of hMSC in vitro. To test this hypothesis, we cultured hMSC on purified ECM proteins in the presence or absence of soluble osteogenic supplements, and assayed for the presence of well-established differentiation markers (production of mineralized matrix, osteopontin, osteocalcin, collagen I, and alkaline phosphatase expression) over a 16-day time course. We found that hMSC adhere to ECM proteins with varying affinity ([Formula: see text]) and through distinct integrin receptors. Importantly, the greatest osteogenic differentiation occurred in cells plated on vitronectin and collagen I and almost no differentiation took place on fibronectin or uncoated plates. We conclude that the contact with vitronectin and collagen I promotes the osteogenic differentiation of hMSC, and that ECM contact alone may be sufficient to induce differentiation in these cells

    Apocynin Derivatives Interrupt Intracellular Signaling Resulting in Decreased Migration in Breast Cancer Cells

    Get PDF
    Cancer cells are defined by their ability to divide uncontrollably and metastasize to secondary sites in the body. Consequently, tumor cell migration represents a promising target for anticancer drug development. Using our high-throughput cell migration assay, we have screened several classes of compounds for noncytotoxic tumor cell migration inhibiting activity. One such compound, apocynin (4-acetovanillone), is oxidized by peroxidases to yield a variety of oligophenolic and quinone-type compounds that are recognized inhibitors of NADPH oxidase and may be inhibitors of the small G protein Rac1 that controls cell migration. We report here that while apocynin itself is not effective, apocynin derivatives inhibit migration of the breast cancer cell line MDA-MB-435 at subtoxic concentrations; the migration of nonmalignant MCF10A breast cells is unaffected. These compounds also cause a significant rearrangement of the actin cytoskeleton, cell rounding, and decreased levels of active Rac1 and its related G protein Cdc42. These results may suggest a promising new route to the development of novel anticancer therapeutics

    Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces – the role of focal adhesion maturation

    Get PDF
    The differentiation of progenitor cells is dependent on more than biochemical signalling. Topographical cues in natural bone extracellular matrix guide cellular differentiation through the formation of focal adhesions, contact guidance, cytoskeletal rearrangement and ultimately gene expression. Osteoarthritis and a number of bone disorders present as growing challenges for our society. Hence, there is a need for next generation implantable devices to substitute for, or guide, bone repair in vivo. Cellular responses to nanometric topographical cues need to be better understood in vitro in order to ensure the effective and efficient integration and performance of these orthopaedic devices. In this study, the FDA approved plastic polycaprolactone, was embossed with nanometric grooves and the response of primary and immortalised osteoprogenitor cells observed. Nanometric groove dimensions were 240 nm or 540 nm deep and 12.5 μm wide. Cells cultured on test surfaces followed contact guidance along the length of groove edges, elongated along their major axis and showed nuclear distortion, they formed more focal complexes and a lower proportions of mature adhesions relative to planar controls. Down-regulation of the osteoblast marker genes RUNX2 and BMPR2 in primary and immortalised cells was observed on grooved substrates. Down-regulation appeared to directly correlate with focal adhesion maturation, indicating the involvement of ERK 1/2 negative feedback pathways following integrin mediated FAK activation

    Synergistic effect of scaffold composition and dynamic culturing environment in multi-layered systems for bone tissue engineering

    Get PDF
    Bone extracellular matrix (ECM) is composed of mineralized collagen fibrils which support biological apatite nucleation that participates in bone outstanding properties. Understanding and mimicking bone morphological and physiological parameters at a biological scale is a major challenge in tissue engineering scaffolding. Using emergent (nano)technologies scaffold designing may be critically improved, enabling highly functional tissue substitutes for bone applications. This study aims to develop novel biodegradable composite scaffolds of tricalcium phosphate (TCPs) and electrospun nanofibers of poly(e-caprolactone) (PCL), combining TCPs osteoconductivity with PCL biocompatibility and elasticity, mimicking bone structure and composition. We hypothesized that scaffolds with such structure/composition would stimulate the proliferation and differentiation of bone marrow stromal cells (BMSCs) towards the osteogenic phenotype. Composite scaffolds, developed by electrospining using consecutive stacked layers of PCL and TCPs, were characterized by FTIR spectroscopy, X-Ray diffraction and scanning electronic microscopy. Cellular behavior was assessed in goat BMSCs seeded onto composite scaffolds and cultured in static or dynamic conditions, using basal or osteogenic media during 7, 14 or 21 days. Cellular proliferation was quantified and osteogenic differentiation confirmed by alkaline phosphatase activity, alizarin red staining and immunocytochemistry for osteocalcin and collagen I. Results suggest that PCL-TCP scaffolds provide a 3D support for gBMSCs proliferation and osteogenic differentiation with production of ECM. TCPs positively stimulate the osteogenic process, especially under dynamic conditions, where PCL-TCP scaffolds are sufficient to promote osteogenic differentiation even in basal medium conditions. The enhancement of the osteogenic potential in dynamic conditions evidences the synergistic effect of scaffold composition and dynamic stimulation in gBMSCs osteogenic differentiation.Fundação para a Ciência e a Tecnologia (FCT)European NoE EXPERTISSUES (NMP3-CT- 2004-500283

    Multi-pathway Kinase Signatures of Multipotent Stromal Cells are Predictive for Osteogenic Differentiation

    Get PDF
    Bone marrow-derived multipotent stromal cells (MSCs) offer great promise for regenerating tissue. Although certain transcription factors have been identified in association with tendency toward particular MSC differentiation phenotypes, the regulatory network of key receptor-mediated signaling pathways activated by extracellular ligands that induce various differentiation responses remains poorly understood. Attempts to predict differentiation fate tendencies from individual pathways in isolation are problematic due to the complex pathway interactions inherent in signaling networks. Accordingly, we have undertaken a multivariate systems approach integrating experimental measurement of multiple kinase pathway activities and osteogenic differentiation in MSCs, together with computational analysis to elucidate quantitative combinations of kinase signals predictive of cell behavior across diverse contexts. In particular, for culture on polymeric biomaterial surfaces presenting tethered epidermal growth factor, type I collagen, neither, or both, we have found that a partial least-squares regression model yields successful prediction of phenotypic behavior on the basis of two principal components comprising the weighted sums of eight intracellular phosphoproteins: phospho-epidermal growth factor receptor, phospho-Akt, phospho-extracellular signal-related kinase 1/2, phospho-heat shock protein 27, phospho-c-Jun, phospho-glycogen synthase kinase 3α/β, phospho-p38, and phospho-signal transducer and activator of transcription 3. This combination provides the strongest predictive capability for 21-day differentiated phenotype status when calculated from day-7 signal measurements; day-4 and day-14 signal measurements are also significantly predictive, indicating a broad time frame during MSC osteogenesis wherein multiple pathways and states of the kinase signaling network are quantitatively integrated to regulate gene expression, cell processes, and ultimately, cell fate. STEM CELLS 2009;27:2804–2814National Institutes of Health (U.S.) (Grant NIH R01-GM059870-07)National Institutes of Health (U.S.) (Grant R01 DE019523- 10)United Negro College Fund ((UNCF)/Merck Postdoctoral Fellowship)Georgia Institute of Technology (Facilitating Academic Careers in Engineering and Sciences Fellowship

    Multiway modeling and analysis in stem cell systems biology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells.</p> <p>Results</p> <p>We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate.</p> <p>Conclusion</p> <p>Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models.</p

    Integrins α2β1 and α11β1 regulate the survival of mesenchymal stem cells on collagen I

    Get PDF
    Although mesenchymal stem cells (MSCs) are the natural source for bone regeneration, the exact mechanisms governing MSC crosstalk with collagen I have not yet been uncovered. Cell adhesion to collagen I is mostly mediated by three integrin receptors – α1β1, α2β1 and α11β1. Using human MSC (hMSC), we show that α11 subunit exhibited the highest basal expression levels but on osteogenic stimulation, both α2 and α11 integrins were significantly upregulated. To elucidate the possible roles of collagen-binding integrins, we applied short hairpin RNA (shRNA)-mediated knockdown in hMSC and found that α2 or α11 deficiency, but not α1, results in a tremendous reduction of hMSC numbers owing to mitochondrial leakage accompanied by Bcl-2-associated X protein upregulation. In order to clarify the signaling conveyed by the collagen-binding integrins in hMSC, we analyzed the activation of focal adhesion kinase, extracellular signal-regulated protein kinase and serine/threonine protein kinase B (PKB/Akt) kinases and detected significantly reduced Akt phosphorylation only in α2- and α11-shRNA hMSC. Finally, experiments with hMSC from osteoporotic patients revealed a significant downregulation of α2 integrin concomitant with an augmented mitochondrial permeability. In conclusion, our study describes for the first time that disturbance of α2β1- or α11β1-mediated interactions to collagen I results in the cell death of MSCs and urges for further investigations examining the impact of MSCs in bone conditions with abnormal collagen I

    A protective role for FGF-23 in local defence against disrupted arterial wall integrity?

    Get PDF
    Increasing interest is focusing on the role of the FGF-23/Klotho axis in mediating vascular calcification. However, the underpinning mechanisms have yet to be fully elucidated. Murine VSMCs were cultured in calcifying medium for a 21d period. FGF-23 mRNA expression was significantly up-regulated by 7d (1.63 fold; P<0.001), with a concomitant increase in protein expression. mRNA and protein expression of both FGFR1 and Klotho were confirmed. Increased FGF-23 and Klotho protein expression was also observed in the calcified media of Enpp1(−/−) mouse aortic tissue. Reduced calcium deposition was observed in calcifying VSMCs cultured with recombinant FGF-23 (10ng/ml; 28.1% decrease; P<0.01). Calcifying VSMCs treated with PD173074, an inhibitor of FGFR1 and FGFR3, showed significantly increased calcification (50nM; 87.8% increase; P<0.001). FGF-23 exposure induced phosphorylation of ERK1/2. Treatment with FGF-23 in combination with PD98059, an ERK1/2 inhibitor, significantly increased VSMC calcification (10μM; 41.3% increase; P<0.01). Use of FGF-23 may represent a novel therapeutic strategy for inhibiting vascular calcification

    Mesenchymal Stem Cell Responses to Bone-Mimetic Electrospun Matrices Composed of Polycaprolactone, Collagen I and Nanoparticulate Hydroxyapatite

    Get PDF
    The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications
    corecore