5,886 research outputs found

    Multiple steady states for characteristic initial value problems

    Get PDF
    The time dependent, isentropic, quasi-one-dimensional equations of gas dynamics and other model equations are considered under the constraint of characteristic boundary conditions. Analysis of the time evolution shows how different initial data may lead to different steady states and how seemingly anamolous behavior of the solution may be resolved. Numerical experimentation using time consistent explicit algorithms verifies the conclusions of the analysis. The use of implicit schemes with very large time steps leads to erroneous results

    Diffeomorphisms, Noether Charges and Canonical Formalism in 2D Dilaton Gravity

    Full text link
    We carry out a parallel study of the covariant phase space and the conservation laws of local symmetries in two-dimensional dilaton gravity. Our analysis is based on the fact that the Lagrangian can be brought to a form that vanishes on-shell giving rise to a well-defined covariant potential for the symplectic current. We explicitly compute the symplectic structure and its potential and show that the requirement to be finite and independent of the Cauchy surface restricts the asymptotic symmetries.Comment: 14 pages, latex with psfig macro, one figur

    Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice

    Full text link
    We present exact calculations of the Potts model partition function Z(G,q,v)Z(G,q,v) for arbitrary qq and temperature-like variable vv on nn-vertex strip graphs GG of the honeycomb lattice for a variety of transverse widths equal to LyL_y vertices and for arbitrarily great length, with free longitudinal boundary conditions and free and periodic transverse boundary conditions. These partition functions have the form Z(G,q,v)=j=1NZ,G,λcZ,G,j(λZ,G,j)mZ(G,q,v)=\sum_{j=1}^{N_{Z,G,\lambda}} c_{Z,G,j}(\lambda_{Z,G,j})^m, where mm denotes the number of repeated subgraphs in the longitudinal direction. We give general formulas for NZ,G,jN_{Z,G,j} for arbitrary LyL_y. We also present plots of zeros of the partition function in the qq plane for various values of vv and in the vv plane for various values of qq. Explicit results for partition functions are given in the text for Ly=2,3L_y=2,3 (free) and Ly=4L_y=4 (cylindrical), and plots of partition function zeros are given for LyL_y up to 5 (free) and Ly=6L_y=6 (cylindrical). Plots of the internal energy and specific heat per site for infinite-length strips are also presented.Comment: 39 pages, 34 eps figures, 3 sty file

    A Planck-like problem for quantum charged black holes

    Get PDF
    Motivated by the parallelism existing between the puzzles of classical physics at the beginning of the XXth century and the current paradoxes in the search of a quantum theory of gravity, we give, in analogy with Planck's black body radiation problem, a solution for the exact Hawking flux of evaporating Reissner-Nordstrom black holes. Our results show that when back-reaction effects are fully taken into account the standard picture of black hole evaporation is significantly altered, thus implying a possible resolution of the information loss problem.Comment: 6 pages, LaTeX file, Awarded Fifth Prize in the Gravity Research Foundation Essay Competition for 200

    Particles and energy fluxes from a CFT perspective

    Get PDF
    We analyze the creation of particles in two dimensions under the action of conformal transformations. We focus our attention on Mobius transformations and compare the usual approach, based on the Bogolubov coefficients, with an alternative but equivalent viewpoint based on correlation functions. In the latter approach the absence of particle production under full Mobius transformations is manifest. Moreover, we give examples, using the moving-mirror analogy, to illustrate the close relation between the production of quanta and energy.Comment: Revised version. To appear in Phys.Rev.

    Inflation, Renormalization, and CMB Anisotropies

    Get PDF
    In single-field, slow-roll inflationary models, scalar and tensorial (Gaussian) perturbations are both characterized by a zero mean and a non-zero variance. In position space, the corresponding variance of those fields diverges in the ultraviolet. The requirement of a finite variance in position space forces its regularization via quantum field renormalization in an expanding universe. This has an important impact on the predicted scalar and tensorial power spectra for wavelengths that today are at observable scales. In particular, we find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio "r" to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n_t=0, is now compatible with a non-zero ratio r= 0.12 +/- 0.06, which is forbidden by the standard prediction (r=-8n_t). Forthcoming observations of the influence of relic gravitational waves on the CMB will offer a non-trivial test of the new predictions.Comment: 4 pages, jpconf.cls, to appear in the Proceedings of Spanish Relativity Meeting 2009 (ERE 09), Bilbao (Spain

    A Parallel Preconditioner for 2D Elliptic Boundary Value Problems

    Get PDF
    This work presents the implementation on a Linux Cluster of a parallel preconditioner for the solution of the linear system resulting from the finite element discretization of a 2D second order elliptic boundary value problem. The numerical method, proposed by Bramble, Pasciak and Schatz, is developed using Domain Decomposition techniques, which are based on the splitting of the computational domain into subregions of smaller size, enforcing suitable compatibility conditions. The Fortran code is implemented using PETSc: a suite of data structures and routines devoted to the scientific parallel computing and based on the MPI standard for all message-passing communications. The main interest of the paper is to investigate how the architectural aspects of the cluster influence the performance of the considered algorithm. We provide an analysis of the execution times as well as of the scalability, using as test case the classical Poisson equation with Dirichlet boundary conditions

    Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography

    Get PDF
    Motivated by the quest for black holes in AdS braneworlds, and in particular by the holographic conjecture relating 5D classical bulk solutions with 4D quantum corrected ones, we numerically solve the semiclassical Einstein equations (backreaction equations) with matter fields in the (zero temperature) Boulware vacuum state. In the absence of an exact analytical expression for in four dimensions we work within the s-wave approximation. Our results show that the quantum corrected solution is very similar to Schwarzschild till very close to the horizon, but then a bouncing surface for the radial function appears which prevents the formation of an event horizon. We also analyze the behavior of the geometry beyond the bounce, where a curvature singularity arises. In the dual theory, this indicates that the corresponding 5D static classical braneworld solution is not a black hole but rather a naked singularity.Comment: 26 pages, 4 figures; revised version (title changed, conclusions shortened), published as Phys. Rev. D73, 104023 (2006
    corecore