In single-field, slow-roll inflationary models, scalar and tensorial
(Gaussian) perturbations are both characterized by a zero mean and a non-zero
variance. In position space, the corresponding variance of those fields
diverges in the ultraviolet. The requirement of a finite variance in position
space forces its regularization via quantum field renormalization in an
expanding universe. This has an important impact on the predicted scalar and
tensorial power spectra for wavelengths that today are at observable scales. In
particular, we find a non-trivial change in the consistency condition that
relates the tensor-to-scalar ratio "r" to the spectral indices. For instance,
an exact scale-invariant tensorial power spectrum, n_t=0, is now compatible
with a non-zero ratio r= 0.12 +/- 0.06, which is forbidden by the standard
prediction (r=-8n_t). Forthcoming observations of the influence of relic
gravitational waves on the CMB will offer a non-trivial test of the new
predictions.Comment: 4 pages, jpconf.cls, to appear in the Proceedings of Spanish
Relativity Meeting 2009 (ERE 09), Bilbao (Spain