22 research outputs found

    Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene

    Get PDF
    While many disease-associated single nucleotide polymorphisms (SNPs) are associated with gene expression (expression quantitative trait loci, eQTLs), a large proportion of complex disease genome-wide association study (GWAS) variants are of unknown function. Some of these SNPs may contribute to disease by regulating gene splicing. Here, we investigate whether SNPs that are associated with alternative splicing (splice QTL or sQTL) can identify novel functions for existing GWAS variants or suggest new associated variants in chronic obstructive pulmonary disease (COPD). RNA sequencing was performed on whole blood from 376 subjects from the COPDGene Study. Using linear models, we identified 561,060 unique sQTL SNPs associated with 30,333 splice sites corresponding to 6,419 unique genes. Similarly, 708,928 unique eQTL SNPs involving 15,913 genes were detected at 10% FDR. While there is overlap between sQTLs and eQTLs, 55.3% of sQTLs are not eQTLs. Co-localization analysis revealed that 7 out of 21 loci associated with COPD (p</p

    A genome-wide association study of bronchodilator response in participants of European and African ancestry from six independent cohorts

    Get PDF
    Introduction Bronchodilator response (BDR) is a measurement of acute bronchodilation in response to short-acting β2-agonists, with a heritability between 10 and 40%. Identifying genetic variants associated with BDR may lead to a better understanding of its complex pathophysiology. Methods We performed a genome-wide association study (GWAS) of BDR in six adult cohorts with participants of European ancestry (EA) and African ancestry (AA) including community cohorts and cohorts ascertained on the basis of obstructive pulmonary disease. Validation analysis was carried out in two paediatric asthma cohorts. Results A total of 10 623 EA and 3597 AA participants were included in the analyses. No single nucleotide polymorphism (SNP) was associated with BDR at the conventional genome-wide significance threshold (p<5×10−8). Performing fine mapping and using a threshold of p<5×10−6 to identify suggestive variants of interest, we identified three SNPs with possible biological relevance: rs35870000 (within FREM1), which may be involved in IgE- and IL5-induced changes in airway smooth muscle cell responsiveness; rs10426116 (within ZNF284), a zinc finger protein, which has been implicated in asthma and BDR previously; and rs4782614 (near ATP2C2), involved in calcium transmembrane transport. Validation in paediatric cohorts yielded no significant SNPs, possibly due to age–genotype interaction effects. Conclusion Ancestry-stratified and ancestry-combined GWAS meta-analyses of over 14 000 participants did not identify genetic variants associated with BDR at the genome-wide significance threshold, although a less stringent threshold identified three variants showing suggestive evidence of association. A common definition and protocol for measuring BDR in research may improve future efforts to identify variants associated with BDR.publishedVersio

    Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterised by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defence, telomere maintenance, signalling and cell-cell adhesion. Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations. Methods and measurements: We conducted genome-wide analyses across three independent studies and meta-analysed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF. Main results: We identified and replicated three new genome-wide significant (P<5×10−8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1 and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as-yet unreported IPF susceptibility variants contribute to IPF susceptibility. Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF, supports recent studies demonstrating the importance of mTOR signalling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility

    Integrative Genomics Analysis Identifies ACVR1B as a Candidate Causal Gene of Emphysema Distribution

    No full text
    Genome-wide association studies (GWAS) have identified multiple associations with emphysema apicobasal distribution (EABD), but the biological functions of these variants are unknown. To characterize the functions of EABD-associated variants, we integrated GWAS results with 1) expression quantitative trait loci (eQTL) from the Genotype Tissue Expression (GTEx) project and subjects in the COPDGene (Genetic Epidemiology of COPD) study and 2) cell type epigenomic marks from the Roadmap Epigenomics project. On the basis of these analyses, we selected a variant near ACVR1B (activin A receptor type 1B) for functional validation. SNPs from 168 loci with P values less than 5 x 10(-5) in the largest GWAS meta-analysis of EABD were analyzed. Eighty-four loci overlapped eQTL, with 12 of these loci showing greater than 80% likelihood of harboring a single, shared GWAS and eQTL causal variant. Seventeen cell types were enriched for overlap between EABD loci and Roadmap Epigenomics marks (permutation P <0.05), with the strongest enrichment observed in CD4(+), CD8(+), and regulatory T cells. We selected a putative causal variant, rs7962469, associated with ACVR1B expression in lung tissue for additional functional investigation, and reporter assays confirmed allele-specific regulatory activity for this variant in human bronchial epithelial and Jurkat immune cell lines. ACVR1B expression levels exhibit a nominally significant association with emphysema distribution. EABD-associated loci are preferentially enriched in regulatory elements of multiple cell types, most notably T-cell subsets. Multiple EABD loci colocalize to regulatory elements that are active across multiple tissues and cell types, and functional analyses confirm the presence of an EABD-associated functional variant that regulates ACVR1B expression, indicating that transforming growth factor-beta signaling plays a role in the EABD phenotype

    A genome-wide association study of bronchodilator response in participants of European and African ancestry from six independent cohorts

    No full text
    Introduction Bronchodilator response (BDR) is a measurement of acute bronchodilation in response to short-acting β2-agonists, with a heritability between 10 and 40%. Identifying genetic variants associated with BDR may lead to a better understanding of its complex pathophysiology. Methods We performed a genome-wide association study (GWAS) of BDR in six adult cohorts with participants of European ancestry (EA) and African ancestry (AA) including community cohorts and cohorts ascertained on the basis of obstructive pulmonary disease. Validation analysis was carried out in two paediatric asthma cohorts. Results A total of 10 623 EA and 3597 AA participants were included in the analyses. No single nucleotide polymorphism (SNP) was associated with BDR at the conventional genome-wide significance threshold (p<5×10−8). Performing fine mapping and using a threshold of p<5×10−6 to identify suggestive variants of interest, we identified three SNPs with possible biological relevance: rs35870000 (within FREM1), which may be involved in IgE- and IL5-induced changes in airway smooth muscle cell responsiveness; rs10426116 (within ZNF284), a zinc finger protein, which has been implicated in asthma and BDR previously; and rs4782614 (near ATP2C2), involved in calcium transmembrane transport. Validation in paediatric cohorts yielded no significant SNPs, possibly due to age–genotype interaction effects. Conclusion Ancestry-stratified and ancestry-combined GWAS meta-analyses of over 14 000 participants did not identify genetic variants associated with BDR at the genome-wide significance threshold, although a less stringent threshold identified three variants showing suggestive evidence of association. A common definition and protocol for measuring BDR in research may improve future efforts to identify variants associated with BDR

    A systematic analysis of protein-altering exonic variants in chronic obstructive pulmonary disease

    No full text
    Genome-wide association studies (GWASs) have identified regions associated with chronic obstructive pulmonary disease (COPD). GWASs of other diseases have shown an approximately 10-fold overrepresentation of nonsynonymous variants, despite limited exonic coverage on genotyping arrays. We hypothesized that a large-scale analysis of coding variants could discover novel genetic associations with COPD, including rare variants with large effect sizes. We performed a meta-analysis of exome arrays from 218,399 controls and 33,851 moderate-to-severe COPD cases. All exome-wide significant associations were present in regions previously identified by GWAS. We did not identify any novel rare coding variants with large effect sizes. Within GWAS regions on chromosomes 5q, 6p, and 15q, four coding variants were conditionally significant (p < 0.00015) when adjusting for lead GWAS SNPs. A common GSDMB splice variant (rs11078928) previously associated with decreased risk for asthma, was nominally associated with decreased risk for COPD (MAF = 0.46, p=1.8e-4). Two stop variants in CCHCR1, a gene involved in regulating cell proliferation, were associated with COPD (both p < 0.0001). The SERPINA1 Z allele was associated with a random effects odds ratio of 1.43 for COPD (95% CI: 1.17-1.74), though with marked heterogeneity across studies. Overall, COPD-associated exonic variants were identified in genes involved in DNA methylation, cell-matrix interactions, cell proliferation, and cell death. In conclusion, we performed the largest exome array meta-analysis of COPD to date and identified potential functional coding variants. Future studies are needed to identify rarer variants, and further define the role of coding variants in COPD pathogenesis

    A systematic analysis of protein-altering exonic variants in chronic obstructive pulmonary disease

    Get PDF
    Genome-wide association studies (GWASs) have identified regions associated with chronic obstructive pulmonary disease (COPD). GWASs of other diseases have shown an approximately 10-fold overrepresentation of nonsynonymous variants, despite limited exonic coverage on genotyping arrays. We hypothesized that a large-scale analysis of coding variants could discover novel genetic associations with COPD, including rare variants with large effect sizes. We performed a meta-analysis of exome arrays from 218,399 controls and 33,851 moderate-to-severe COPD cases. All exome-wide significant associations were present in regions previously identified by GWAS. We did not identify any novel rare coding variants with large effect sizes. Within GWAS regions on chromosomes 5q, 6p, and 15q, four coding variants were conditionally significant (P < 0.00015) when adjusting for lead GWAS single-nucleotide polymorphisms A common gasdermin B (GSDMB) splice variant (rs11078928) previously associated with a decreased risk for asthma was nominally associated with a decreased risk for COPD [minor allele frequency (MAF)=0.46, P = 1.8e-4]. Two stop variants in coiled-coil a-helical rod protein 1 (CCHCR1), a gene involved in regulating cell proliferation, were associated with COPD (both P < 0.0001). The SERPINA1 Z allele was associated with a random-effects odds ratio of 1.43 for COPD (95% confidence interval = 1.17–1.74), though with marked heterogeneity across studies. Overall, COPD-associated exonic variants were identified in genes involved in DNA methylation, cell-matrix interactions, cell proliferation, and cell death. In conclusion, we performed the largest exome array meta-analysis of COPD to date and identified potential functional coding variants. Future studies are needed to identify rarer variants and further define the role of coding variants in COPD pathogenesis

    Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts

    Get PDF
    Background: Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes.Methods: We constructed a polygenic risk score using a genome wide association study of lung function (FEV1 and FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC Findings: The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 [95% CI 1·74–1·88] and non-European (1·42 [1·34–1·51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56–9·72) in European ancestry and 4·83 (3·45–6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79–0·81] vs 0·76 [0·75 0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern. Interpretation: A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtypes associated with cigarette smoking, and patterns of reduced lung growth.</div

    Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants

    No full text
    Chronic obstructive pulmonary disease is a leading cause of morbidity and mortality. Here, the authors analyse whole genome sequence data and find new loci associated with lung function and COPD
    corecore