70 research outputs found

    Characterization of Neopestalotiopsis, Pestalotiopsis and Truncatella species associated with grapevine trunk diseases in France

    Get PDF
    Pestalotioid fungi associated with grapevine wood diseases in France are regularly found in vine growing regions, and research was conducted to identify these fungi. Many of these taxa are morphologically indistinguishable, but sequence data can resolve the cryptic species in the group. Thirty pestalotioid fungi were isolated from infected grapevines from seven field sites and seven diseased grapevine varieties in France. Analysis of internal transcribed spacer (ITS), partial β-tubulin (TUB) and partial translation elongation factor 1-alpha (TEF) sequence data revealed several species of Neopestalotiopsis, Pestalotiopsis and Truncatella associated with the symptoms. Three Neopestalotiopsis spp. and one Pestalotiopsis sp. are reported for the first time associated with wood diseases in grapevine in France and worldwide, and include Neopestalotiopsis asiatica, N. javaensis, Neopestalotiopsis sp. and Pestalotiopsis biciliata. The sequence data indicate that Truncatella angustata was also associated with wood grapevine diseases in France; this species was previously reported on grapevine in Iran.  The importance of controlling Pestalotioid fungi associated with wood grapevine diseases is discussed, which was previously considered of minor importance. These fungi are isolated from plants in nurseries before marketing

    Isolation and identification of pathogenic fungi and oomycetes associated with beans and cowpea root diseases in Oman

    Get PDF
    The purpose of this study was to characterize fungal and oomycete species associated with root diseases of Phaseolus vulgaris, Vigna unguiculata, V. radiata and Vicia faba in Oman. Root samples were collected from plants suffering from weakened growth and yellowing symptoms. Fungal species were isolated on 2.5% potato dextrose agar amended with 10 mg l−1 rifampicin and 200 mg l−1 of ampicillin and identification was based on sequences of the internal transcribed spacer region of the ribosomal RNA gene (ITS rRNA), glycerol-3-phosphate dehydrogenase (GPDH), translation elongation factor-1 alpha (TEF), beta-tubulin (TUB), calmodulin (CMD), actin (ACT). Isolations yielded 204 fungal isolates belonging to nine different genera, with most isolates belonging to Alternaria and Fusarium. Molecular identification revealed that the isolates belong to 20 fungal species, the most dominant of which was Alternaria alternata. Pathogenicity tests were conducted on each plant species. The inoculations on P. vulgaris revealed that Pythium aphanidermatum induced rotting, damping-off and wilt symptoms while Fusarium equiseti induced yellowing symptoms on the leaves. Rhizoctonia solani produced lesions and root rot on Vigna unguiculata while Curvularia muehlenbeckiae and Curvularia caricae-papayae produced root lesions on the roots of V. unguiculata and V. radiata, respectively. Alternaria alternata produced brown symptoms on the tap root of Vicia faba. P. aphanidermatum resulted in a significant reduction in the fresh weight, dry weight and shoot length of Phaseolus vulgaris. The study shows that several fungal species can be found associated with the roots of beans and Vigna unguiculata in Oman and can result in varying disease symptoms. This is the first report of root lesions produced by Curvularia muehlenbeckiae on the roots of V. unguiculata and by C. caricae-papayae on V. radiata worldwide

    WWER-1000 Nuclear reactor simulator for education. Part A': Overview of simulator physico-mathematical model components

    Get PDF
    A review of phylogenetic studies carried out together with morphological ones shows that a major problem with most early studies is that they concentrated on techniques and used material or strains of fungi that in most cases were not carefully reference, and in a worrying number of cases wrongly named. Most classical species, particularly of microfungi, are not represented by adequate type material, or other authoritatively identified cultures or specimens, that can serve as DNA sources for phylogenetic study, or for developing robust identification systems. Natural classifications of fungi therefore suffer from the lack of reference strains in resultant phylogenetic trees. In some cases, epitypification and neotypification can solve this problem and these tools are increasingly used to resolve taxonomic confusion and stabilize the understanding of species, genera, families, or orders of fungi. This manuscript discusses epitypification and neotypification, describes how to epitypify or neotypify species and examines the importance of this process. A set of guidelines for epitypification is presented. Examples where taxa have been epitypified are presented and the benefits and problems of epitypification are discussed. As examples of epitypification, or to provide reference specimens, a new epitype is designated for Paraphaeosphaeria michotii and reference specimens are provided for Astrosphaeriella stellata, A. bakeriana, Phaeosphaeria elongata, Ophiobolus cirsii, and O. erythrosporus. In this way we demonstrate how to epitypify taxa and its importance, and also illustrate the value of proposing reference specimens if epitypification is not advisable. Although we provided guidelines for epitypification, the decision to epitypify or not lies with the author, who should have experience of the fungus concerned. This responsibility is to be taken seriously, as once a later typification is made, it may not be possible to undo that, particularly in the case of epitypes, without using the lengthy and tedious formal conservation and rejection processes

    Phylogenetic Revision of Savoryellaceae and Evidence for Its Ranking as a Subclass

    Get PDF
    Morphology, phylogeny, and molecular clock analyses were carried out on Savoryellaceae in order to understand the placements of taxa in this family. Ascotaiwania and Neoascotaiwania formed a well-supported separate clade in the phylogeny of concatenated partial SSU, LSU, TEF, and RPB2 gene data. These two genera share similar morphological features, especially in their asexual morphs, indicating that they are congeneric. Hence, we synonymize Neoascotaiwania under Ascotaiwania. Ascotaiwania hughesii (and its asexual morph, Helicoon farinosum) and Monotosporella setosa grouped in a clade sister to Pleurotheciales and are excluded from Ascotaiwania which becomes monophyletic. A novel genus Helicoascotaiwania is introduced to accommodate Ascotaiwania hughesii and its asexual morph, Helicoon farinosum. A novel species, Savoryella yunnanensis is introduced from a freshwater habitat in Yunnan Province, China. Comprehensive descriptions and illustrations are provided for selected taxa in this family. In addition, we provide evolutionary divergence estimates for Savoryellomycetidae taxa and major marine based taxa to support our phylogenetic and morphological investigations. The taxonomic placement of these marine-based taxa is briefly discussed. Our results indicate that the most basal group of marine-based taxa are represented within Lulworthiales, which diverged from ancestral Sordariomycetes around 149 Mya (91–209) and Savoryellomycetidae around 213 Mya (198–303)

    Fusarium and allied fusarioid taxa (FUSA). 1

    Get PDF
    Seven Fusarium species complexes are treated, namely F. aywerte species complex (FASC) (two species), F. buharicum species complex (FBSC) (five species), F. burgessii species complex (FBURSC) (three species), F. camptoceras species complex (FCAMSC) (three species), F. chlamydosporum species complex (FCSC) (eight species), F. citricola species complex (FCCSC) (five species) and the F. concolor species complex (FCOSC) (four species). New species include Fusicolla elongata from soil (Zimbabwe), and Neocosmospora geoasparagicola from soil associated with Asparagus officinalis (Netherlands). New combinations include Neocosmospora akasia, N. awan, N. drepaniformis, N. duplosperma, N. geoasparagicola, N. mekan, N. papillata, N. variasi and N. warna. Newly validated taxa include Longinectria gen. nov., L. lagenoides, L. verticilliforme, Fusicolla gigas and Fusicolla guangxiensis. Furthermore, Fusarium rosicola is reduced to synonymy under N. brevis. Finally, the genome assemblies of Fusarium secorum (CBS 175.32), Microcera coccophila (CBS 310.34), Rectifusarium robinianum (CBS 430.91), Rugonectria rugulosa (CBS 126565), and Thelonectria blattea (CBS 952.68) are also announced her

    Finding needles in haystacks:Linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi

    Get PDF
    This article is the ninth in the series of Fungal Diversity Notes, where 107 taxa distributed in three phyla, nine classes, 31 orders and 57 families are described and illustrated. Taxa described in the present study include 12 new genera, 74 new species, three new combinations, two reference specimens, a re-circumscription of the epitype, and 15 records of sexualasexual morph connections, new hosts and new geographical distributions. Twelve new genera comprise Brunneofusispora, Brunneomurispora, Liua, Lonicericola, Neoeutypella, Paratrimmatostroma, Parazalerion, Proliferophorum, Pseudoastrosphaeriellopsis, Septomelanconiella, Velebitea and Vicosamyces. Seventy-four new species are Agaricus memnonius, A. langensis, Aleurodiscus patagonicus, Amanita flavoalba, A. subtropicana, Amphisphaeria mangrovei, Baorangia major, Bartalinia kunmingensis, Brunneofusispora sinensis, Brunneomurispora lonicerae, Capronia camelliaeyunnanensis, Clavulina thindii, Coniochaeta simbalensis, Conlarium thailandense, Coprinus trigonosporus, Liua muriformis, Cyphellophora filicis, Cytospora ulmicola, Dacrymyces invisibilis, Dictyocheirospora metroxylonis, Distoseptispora thysanolaenae, Emericellopsis koreana, Galiicola baoshanensis, Hygrocybe lucida, Hypoxylon teeravasati, Hyweljonesia indica, Keissleriella caraganae, Lactarius olivaceopallidus, Lactifluus midnapurensis, Lembosia brigadeirensis, Leptosphaeria urticae, Lonicericola hyaloseptispora, Lophiotrema mucilaginosis, Marasmiellus bicoloripes, Marasmius indojasminodorus, Micropeltis phetchaburiensis, Mucor orantomantidis, Murilentithecium lonicerae, Neobambusicola brunnea, Neoeutypella baoshanensis, Neoroussoella heveae, Neosetophoma lonicerae, Ophiobolus malleolus, Parabambusicola thysanolaenae, Paratrimmatostroma kunmingensis, Parazalerion indica, Penicillium dokdoense, Peroneutypa mangrovei, Phaeosphaeria cycadis, Phanerochaete australosanguinea, Plectosphaerella kunmingensis, Plenodomus artemisiae, P. lijiangensis, Proliferophorum thailandicum, Pseudoastrosphaeriellopsis kaveriana, Pseudohelicomyces menglunicus, Pseudoplagiostoma mangiferae, Robillarda mangiferae, Roussoella elaeicola, Russula choptae, R. uttarakhandia, Septomelanconiella thailandica, Spencermartinsia acericola, Sphaerellopsis isthmospora, Thozetella lithocarpi, Trechispora echinospora, Tremellochaete atlantica, Trichoderma koreanum, T. pinicola, T. rugulosum, Velebitea chrysotexta, Vicosamyces venturisporus, Wojnowiciella kunmingensis and Zopfiella indica. Three new combinations are Baorangia rufomaculata, Lanmaoa pallidorosea and Wojnowiciella rosicola. The reference specimens of Canalisporium kenyense and Tamsiniella labiosa are designated. The epitype of Sarcopeziza sicula is re-circumscribed based on cyto- and histochemical analyses. The sexual-asexual morph connection of Plenodomus sinensis is reported from ferns and Cirsium for the first time. In addition, the new host records and country records are Amanita altipes, A. melleialba, Amarenomyces dactylidis, Chaetosphaeria panamensis, Coniella vitis, Coprinopsis kubickae, Dothiorella sarmentorum, Leptobacillium leptobactrum var. calidus, Muyocopron lithocarpi, Neoroussoella solani, Periconia cortaderiae, Phragmocamarosporium hederae, Sphaerellopsis paraphysata and Sphaeropsis eucalypticola

    FungalTraits:A user-friendly traits database of fungi and fungus-like stramenopiles

    Get PDF
    The cryptic lifestyle of most fungi necessitates molecular identification of the guild in environmental studies. Over the past decades, rapid development and affordability of molecular tools have tremendously improved insights of the fungal diversity in all ecosystems and habitats. Yet, in spite of the progress of molecular methods, knowledge about functional properties of the fungal taxa is vague and interpretation of environmental studies in an ecologically meaningful manner remains challenging. In order to facilitate functional assignments and ecological interpretation of environmental studies we introduce a user friendly traits and character database FungalTraits operating at genus and species hypothesis levels. Combining the information from previous efforts such as FUNGuild and Fun(Fun) together with involvement of expert knowledge, we reannotated 10,210 and 151 fungal and Stramenopila genera, respectively. This resulted in a stand-alone spreadsheet dataset covering 17 lifestyle related traits of fungal and Stramenopila genera, designed for rapid functional assignments of environmental studies. In order to assign the trait states to fungal species hypotheses, the scientific community of experts manually categorised and assigned available trait information to 697,413 fungal ITS sequences. On the basis of those sequences we were able to summarise trait and host information into 92,623 fungal species hypotheses at 1% dissimilarity threshold

    Fusarium: more than a node or a foot-shaped basal cell

    Get PDF
    Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org)

    Finding needles in haystacks : linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201
    corecore