4 research outputs found

    In situ quantification of brown trout movements

    No full text
    Les mouvements sont un aspect crucial de l'Ă©cologie et de l'Ă©volution, car ils dĂ©terminent la dynamique des populations et des communautĂ©s. Les menaces anthropiques pesant sur ces dynamiques sont donc une prĂ©occupation majeure pour la conservation. Dans cette thĂšse, j'ai Ă©tudiĂ© les mouvements de la truite commune (Salmo trutta) dans le contexte des rempoissonnements, c'est-Ă -dire la supplĂ©mentation des populations sauvages Ă  partir de souches d'Ă©levage locales et exogĂšnes. À cette fin, j'ai d'abord dĂ©veloppĂ© un nouvel outil gĂ©nĂ©tique utile pour dĂ©tecter la structure gĂ©nĂ©tique chez la truite commune et l'hybridation avec des souches Ă©levĂ©es en captivitĂ©. Cet outil a permis un grand succĂšs de gĂ©notypage et a permis d'identifier les patrons d'isolement par la distance. Son intĂ©rĂȘt rĂ©side dans sa facilitĂ© de mise en Ɠuvre, et son universalitĂ© potentielle pour la gĂ©nĂ©tique des populations de cette espĂšce dans son aire de rĂ©partition. J'ai ensuite dĂ©veloppĂ© de nouvelles mĂ©thodes d'assignation combinant des donnĂ©es gĂ©nĂ©tiques et isotopiques, afin d'Ă©tudier les mouvements Ă  l'Ă©chelle spatiale d'un bassin hydrographique, ce qui prĂ©sente un intĂ©rĂȘt pour des questions appliquĂ©es telles que la gestion. Cette approche, basĂ©e sur le machine learning, a rĂ©vĂ©lĂ© une grande prĂ©cision et un fort pouvoir discriminant pour assigner des individus Ă  leur population d'origine. J'ai aussi dĂ©crit les effets des rempoissonnements sur les patrons de diversitĂ© et de diffĂ©renciation gĂ©nĂ©tiques et constatĂ© que les rempoissonnements ont pour effet d'augmenter la diversitĂ© et la diffĂ©renciation, et que les patrons naturels attendus pouvaient ĂȘtre inversĂ©s dans le cas de cette pratique. Ensuite, l'hybridation entre souches sauvages et d'Ă©levage affecte les patrons de dispersion, rĂ©vĂ©lant que les deux souches diffĂšrent en termes de propension, de distances et de direction dans leurs dispersion, alors que les hybrides prĂ©sentent des patrons de dispersion moins prononcĂ©s. Enfin, j'ai cherchĂ© Ă  mieux comprendre l'influence des facteurs individuels, environnementaux et paysagers sur les mouvements des populations naturelles; ici, j'ai trouvĂ© que certains dĂ©terminants Ă©taient universels d'un bassin versant Ă  l'autre, par exemple le fait que les gros individus Ă©tant plus enclins Ă  se dĂ©placer, ou encore que les sites directement reliĂ©s par le flux d'eau, et ceux ayant des similitudes en termes d'altitude et de type de cours d'eau Ă©changeaient plus de migrant que les autres. D'autre part, d'autres facteurs dĂ©pendaient du contexte, par exemple, les relations entre patrons de mouvements et position dans les paysages fluviaux et la disponibilitĂ© de l'habitat varient entre les riviĂšres. Cette thĂšse a contribuĂ© Ă  amĂ©liorer les mĂ©thodes d'Ă©tude des mouvements et Ă  identifier les facteurs sous-jacents aux patrons de mouvements Ă  l'Ă©chelle du bassin hydrographique. Les implications de ma thĂšse sont donc Ă  la fois fondamentales et appliquĂ©es, car une meilleure comprĂ©hension des patrons de mouvement dans le contexte de perturbations humaines est cruciale pour la gestion et la conservation.Movements are a crucial aspect of ecology and evolution, as they determine population and community dynamics. Threats to these dynamics because of human perturbations are therefore a major concern for conservation. In this thesis, I studied movements in the Brown trout (Salmo trutta) in the context of stocking, i.e. the supplementation of wild populations with captive-bred strains from both, native and exogenous origin. For this purpose, I first developed a new genetic tool useful for detecting genetic structure in the brown trout, as well as hybridization with captive-bred strains, exhibiting high genotyping success and enabling to successfully identify patterns of isolation-by-distance. This tool was shown cost effective, and especially, should be useful for many population genetics studies on this species across its range. Then, I developed novel assignment approaches combining genetic data and stable isotopes, to study movements at the spatial scale of a river basin, which is of interest for applied matters such as management. This approach, based on machine learning, revealed high accuracy and power to discriminate and assign individuals to their population of origin. Further, I described the genetic effects of captive breeding on patterns of genetic diversity and differentiation, and found that captive-bred genotypes increased diversity and differentiation, and that expected natural patterns could be reversed in the case of higher frequency of captive-bred genotypes occurring at the level of populations. Then, I demonstrated that admixture between wild individuals and those carrying captive-bred ancestry affected dispersal patterns, that the two strains displayed different movement patterns in terms of propensity, distances, and direction, and that admixture between strains considerably reduced dispersal. Finally, I aimed at better understanding how individual, environmental and landscape related factors influence movements in natural populations; here I found that some determinants were universal across rivers, with larger individuals being more prone to movement for instance, or sites that are directly connected by the water flow, and those that are similar in terms of elevation and stream order exchanged more migrants. One the other hand, other drivers were context dependent, for instance the relations between movement patterns and position within riverscapes and habitat availability depended on the river basin considered. This thesis contributed to improve methods for studying movements, and to identify factors underlying patterns of movements at the scale of the river basin. The implications of my thesis are thus both fundamental and applied as a better understanding of movement patterns in the context of human perturbations is crucial for management and conservation

    Quantification in situ des mouvements de truite fario

    Get PDF
    Movements are a crucial aspect of ecology and evolution, as they determine population and community dynamics. Threats to these dynamics because of human perturbations are therefore a major concern for conservation. In this thesis, I studied movements in the Brown trout (Salmo trutta) in the context of stocking, i.e. the supplementation of wild populations with captive-bred strains from both, native and exogenous origin. For this purpose, I first developed a new genetic tool useful for detecting genetic structure in the brown trout, as well as hybridization with captive-bred strains, exhibiting high genotyping success and enabling to successfully identify patterns of isolation-by-distance. This tool was shown cost effective, and especially, should be useful for many population genetics studies on this species across its range. Then, I developed novel assignment approaches combining genetic data and stable isotopes, to study movements at the spatial scale of a river basin, which is of interest for applied matters such as management. This approach, based on machine learning, revealed high accuracy and power to discriminate and assign individuals to their population of origin. Further, I described the genetic effects of captive breeding on patterns of genetic diversity and differentiation, and found that captive-bred genotypes increased diversity and differentiation, and that expected natural patterns could be reversed in the case of higher frequency of captive-bred genotypes occurring at the level of populations. Then, I demonstrated that admixture between wild individuals and those carrying captive-bred ancestry affected dispersal patterns, that the two strains displayed different movement patterns in terms of propensity, distances, and direction, and that admixture between strains considerably reduced dispersal. Finally, I aimed at better understanding how individual, environmental and landscape related factors influence movements in natural populations; here I found that some determinants were universal across rivers, with larger individuals being more prone to movement for instance, or sites that are directly connected by the water flow, and those that are similar in terms of elevation and stream order exchanged more migrants. One the other hand, other drivers were context dependent, for instance the relations between movement patterns and position within riverscapes and habitat availability depended on the river basin considered. This thesis contributed to improve methods for studying movements, and to identify factors underlying patterns of movements at the scale of the river basin. The implications of my thesis are thus both fundamental and applied as a better understanding of movement patterns in the context of human perturbations is crucial for management and conservation.Les mouvements sont un aspect crucial de l'Ă©cologie et de l'Ă©volution, car ils dĂ©terminent la dynamique des populations et des communautĂ©s. Les menaces anthropiques pesant sur ces dynamiques sont donc une prĂ©occupation majeure pour la conservation. Dans cette thĂšse, j'ai Ă©tudiĂ© les mouvements de la truite commune (Salmo trutta) dans le contexte des rempoissonnements, c'est-Ă -dire la supplĂ©mentation des populations sauvages Ă  partir de souches d'Ă©levage locales et exogĂšnes. À cette fin, j'ai d'abord dĂ©veloppĂ© un nouvel outil gĂ©nĂ©tique utile pour dĂ©tecter la structure gĂ©nĂ©tique chez la truite commune et l'hybridation avec des souches Ă©levĂ©es en captivitĂ©. Cet outil a permis un grand succĂšs de gĂ©notypage et a permis d'identifier les patrons d'isolement par la distance. Son intĂ©rĂȘt rĂ©side dans sa facilitĂ© de mise en Ɠuvre, et son universalitĂ© potentielle pour la gĂ©nĂ©tique des populations de cette espĂšce dans son aire de rĂ©partition. J'ai ensuite dĂ©veloppĂ© de nouvelles mĂ©thodes d'assignation combinant des donnĂ©es gĂ©nĂ©tiques et isotopiques, afin d'Ă©tudier les mouvements Ă  l'Ă©chelle spatiale d'un bassin hydrographique, ce qui prĂ©sente un intĂ©rĂȘt pour des questions appliquĂ©es telles que la gestion. Cette approche, basĂ©e sur le machine learning, a rĂ©vĂ©lĂ© une grande prĂ©cision et un fort pouvoir discriminant pour assigner des individus Ă  leur population d'origine. J'ai aussi dĂ©crit les effets des rempoissonnements sur les patrons de diversitĂ© et de diffĂ©renciation gĂ©nĂ©tiques et constatĂ© que les rempoissonnements ont pour effet d'augmenter la diversitĂ© et la diffĂ©renciation, et que les patrons naturels attendus pouvaient ĂȘtre inversĂ©s dans le cas de cette pratique. Ensuite, l'hybridation entre souches sauvages et d'Ă©levage affecte les patrons de dispersion, rĂ©vĂ©lant que les deux souches diffĂšrent en termes de propension, de distances et de direction dans leurs dispersion, alors que les hybrides prĂ©sentent des patrons de dispersion moins prononcĂ©s. Enfin, j'ai cherchĂ© Ă  mieux comprendre l'influence des facteurs individuels, environnementaux et paysagers sur les mouvements des populations naturelles; ici, j'ai trouvĂ© que certains dĂ©terminants Ă©taient universels d'un bassin versant Ă  l'autre, par exemple le fait que les gros individus Ă©tant plus enclins Ă  se dĂ©placer, ou encore que les sites directement reliĂ©s par le flux d'eau, et ceux ayant des similitudes en termes d'altitude et de type de cours d'eau Ă©changeaient plus de migrant que les autres. D'autre part, d'autres facteurs dĂ©pendaient du contexte, par exemple, les relations entre patrons de mouvements et position dans les paysages fluviaux et la disponibilitĂ© de l'habitat varient entre les riviĂšres. Cette thĂšse a contribuĂ© Ă  amĂ©liorer les mĂ©thodes d'Ă©tude des mouvements et Ă  identifier les facteurs sous-jacents aux patrons de mouvements Ă  l'Ă©chelle du bassin hydrographique. Les implications de ma thĂšse sont donc Ă  la fois fondamentales et appliquĂ©es, car une meilleure comprĂ©hension des patrons de mouvement dans le contexte de perturbations humaines est cruciale pour la gestion et la conservation

    A river runs through it: The causes, consequences, and management of intraspecific diversity in river networks

    No full text
    International audienceRivers are fascinating ecosystems in which the eco-evolutionary dynamics of organisms are constrained by particular features, and biologists have developed a wealth of knowledge about freshwater biodiversity patterns. Over the last 10 years, our group used a holistic approach to contribute to this knowledge by focusing on the causes and consequences of intraspecific diversity in rivers. We conducted empirical works on temperate permanent rivers from southern France, and we broadened the scope of our findings using experiments, meta-analyses, and simulations. We demonstrated that intraspecific (genetic) diversity follows a spatial pattern (downstream increase in diversity) that is repeatable across taxa (from plants to vertebrates) and river systems. This pattern can result from interactive processes that we teased apart using appropriate simulation approaches. We further experimentally showed that intraspe-cific diversity matters for the functioning of river ecosystems. It indeed affects not only community dynamics, but also key ecosystem functions such as litter degradation. This means that losing intraspecific diversity in rivers can yield major ecological effects. Our work on the impact of multiple human stressors on intraspecific diversity revealed that-in the studied river systems-stocking of domestic (fish) strains strongly and consistently alters natural spatial patterns of diversity. It also highlighted the need for specific analytical tools to tease apart spurious from actual relationships in the wild. Finally, we developed original conservation strategies at the basin scale based on the systematic conservation planning framework that appeared pertinent for preserving intraspecific diversity in rivers. We identified several important research avenues that should further facilitate our understanding of patterns of local adaptation in rivers, the identification of processes sustaining intraspecific biodiversity ecosystem function relationships, and the setting of reliable conservation plans

    Development of a large SNPs resource and a low-density SNP array for brown trout (Salmo trutta) population genetics

    No full text
    International audienceBackground: The brown trout (Salmo trutta) is an economically and ecologically important species for which population genetic monitoring is frequently performed. The most commonly used genetic markers for this species are microsatellites and mitochondrial markers that lack replicability among laboratories, and a large genome coverage. An alternative that may be particularly efficient and universal is the development of small to large panels of Single Nucleotide Polymorphism markers (SNPs). Here, we used Restriction site Associated DNA sequences (RADs) markers to identify a set of 12,204 informative SNPs positioned on the brown trout linkage map and suitable for population genetics studies. Then, we used this novel resource to develop a cost-effective array of 192 SNPs (96 × 2) evenly spread on this map. This array was tested for genotyping success in five independent rivers occupied by two main brown trout evolutionary lineages (Atlantic-AT-and Mediterranean-ME-) on a total of 1862 individuals. Moreover, inference of admixture rate with domestic strains and population differentiation were assessed for a small river system (the Taurion River, 190 individuals) and results were compared to a panel of 13 microsatellites. Results: A high genotyping success was observed for all rivers (< 1% of non-genotyped loci per individual), although some initially used SNP failed to be amplified, probably because of mutations in primers, and were replaced. These SNPs permitted to identify patterns of isolation-by-distance for some rivers. Finally, we found that microsatellite and SNP markers yielded very similar patterns for population differentiation and admixture assessments, with SNPs having better ability to detect introgression and differentiation
    corecore