72 research outputs found
Restoration of photosystem II photochemistry and carbon assimilation and related changes in chlorophyll and protein contents during the rehydration of desiccated Xerophyta scabrida leaves
Recovery of photosynthesis in rehydrating desiccated leaves of the poikilochlorophyllous desiccation-tolerant plant Xerophyta scabrida was investigated. Detached leaves were remoistened under 12 h light/dark cycles for 96 h. Water, chlorophyll (Chl), and protein contents, Chl fluorescence, photosynthesis–CO2 concentration response, and the amount and activity of Rubisco were measured at intervals during the rehydration period. Leaf relative water contents reached 87% in 12 h and full turgor in 96 h. Chl synthesis was slower before than after 24 h, and Chla:Chlb ratios changed from 0.13 to 2.6 in 48 h. The maximum quantum efficiency recovered faster during rehydration than the photosystem II operating efficiency and the efficiency factor, which is known to depend mainly on the use of the electron transport chain products. From 24 h to 96 h of rehydration, net carbon fixation was Rubisco limited, rather than electron transport limited. Total Rubisco activity increased during rehydration more than the Rubisco protein content. Desiccated leaves contained, in a close to functional state, more than half the amount of the Rubisco protein present in rehydrated leaves. The results suggest that in X. scabrida leaves Rubisco adopts a special, protective conformation and recovers its activity during rehydration through modifications in redox status
Transport of Charged Aerosol OT Inverse Micelles in Nonpolar Liquids
Surfactants such as Aerosol OT (AOT) are commonly used to stabilize and electrically charge nonpolar colloids in devices such as electronic ink displays. The electrical behavior of such devices is strongly influenced by the presence of charged inverse micelles, formed by excess surfactant that does not cover the particles. The presence of charged inverse micelles results in increased conductivity of the solution, affecting both the energy consumption of the device and its switching characteristics. In this work, we use transient current measurements to investigate the electrical properties of suspensions of the surfactant Aerosol OT in dodecane. No particles are added, to isolate the effect of excess surfactant. The measured currents upon application of a voltage step are found to be exponentially decaying, and can be described by an analytical model based on an equivalent electric circuit. This behavior is physically interpreted, first by the high generation rate of charged inverse micelles giving the suspension resistor like properties, and second by the buildup of layers of charged inverse micelles at both electrodes, acting as capacitors. The model explains the measurements over a large range of surfactant concentrations, applied voltages, and device thicknesses
Characterizing generated charged inverse micelles with transient current measurements
We investigate the generation of charged inverse micelles in nonpolar surfactant solutions relevant for applications such as electronic ink displays and liquid toners. When a voltage is applied across a thin layer of a nonpolar surfactant solution between planar electrodes, the generation of charged inverse micelles leads to a generation current. From current measurements it appears that such charged inverse micelles generated in the presence of an electric field behave differently compared to those present in equilibrium in the absence of a field. To examine the origin of this difference, transient current measurements in which the applied voltage is suddenly increased are used to measure the mobility and the amount of generated charged inverse micelles. The mobility and the corresponding hydrodynamic size are found to be similar to those of charged inverse micelles present in equilibrium, which indicates that other properties determine their different behavior. The amplitude and shape of the transient currents measured as a function of the surfactant concentration confirm that the charged inverse micelles are generated by bulk disproportionation. A theoretical model based on bulk disproportionation with simulations and analytical approximations is developed to analyze the experimental transient currents
DNA-Free Recombinant SV40 Capsids Protect Mice from Acute Renal Failure by Inducing Stress Response, Survival Pathway and Apoptotic Arrest
Viruses induce signaling and host defense during infection. Employing these natural trigger mechanisms to combat organ or tissue failure is hampered by harmful effects of most viruses. Here we demonstrate that SV40 empty capsids (Virus Like Particles-VLPs), with no DNA, induce host Hsp/c70 and Akt-1 survival pathways, key players in cellular survival mechanisms. We postulated that this signaling might protect against organ damage in vivo. Acute kidney injury (AKI) was chosen as target. AKI is critical, prevalent disorder in humans, caused by nephrotoxic agents, sepsis or ischemia, via apoptosis/necrosis of renal tubular cells, with high morbidity and mortality. Systemic administration of VLPs activated Akt-1 and upregulated Hsp/c70 in vivo. Experiments in mercury-induced AKI mouse model demonstrated that apoptosis, oxidative stress and toxic renal failure were significantly attenuated by pretreatment with capsids prior to the mercury insult. Survival rate increased from 12% to >60%, with wide dose response. This study demonstrates that SV40 VLPs, devoid of DNA, may potentially be used as prophylactic agent for AKI. We anticipate that these finding may be projected to a wide range of organ failure, using empty capsids of SV40 as well as other viruses
Rotational averaging-out gravitational sedimentation of colloidal dispersions and phenomena
We report on the differences between colloidal systems left to evolve in the
earth's gravitational field and the same systems for which a slow continuous
rotation averaged out the effects of particle sedimentation on a distance scale
small compared to the particle size. Several systems of micron-sized colloidal
particles were studied: a hard sphere fluid, colloids interacting via
long-range electrostatic repulsions above the freezing volume fraction, an
oppositely charged colloidal system close to either gelation and/or
crystallization, colloids with a competing short-range depletion attraction and
a long-range electrostatic repulsion, colloidal dipolar chains, and colloidal
gold platelets under conditions where they formed stacks. Important differences
in the structure formation were observed between the experiments where the
particles were allowed to sediment and those where sedimentation was averaged
out. For instance, in the case of colloids interacting via long-range
electrostatic repulsions, an unusual sequence of
dilute-Fluid/dilute-Crystal/dense-Fluid/dense-Crystal phases was observed
throughout the suspension under the effect of gravity, related to the volume
fraction dependence of the colloidal interactions, whereas the system stayed
homogeneously crystallized with rotation. For the oppositely charged colloids,
a gel-like structure was found to collapse under the influence of gravity with
a few crystalline layers grown on top of the sediment, whereas when the
colloidal sedimentation was averaged out, the gel completely transformed into
crystallites that were oriented randomly throughout the sample. Rotational
averaging out gravitational sedimentation is an effective and cheap way to
estimate the importance of gravity for colloidal self-assembly processes.Comment: 13 pages, 13 figure
Automated office blood pressure measurements in primary care are misleading in more than one third of treated hypertensives: The VALENTINE-Greece Home Blood Pressure Monitoring study
Abstract Background This study assessed the diagnostic reliability of automated office blood pressure (OBP) measurements in treated hypertensive patients in primary care by evaluating the prevalence of white coat hypertension (WCH) and masked uncontrolled hypertension (MUCH) phenomena. Methods Primary care physicians, nationwide in Greece, assessed consecutive hypertensive patients on stable treatment using OBP (1 visit, triplicate measurements) and home blood pressure (HBP) measurements (7 days, duplicate morning and evening measurements). All measurements were performed using validated automated devices with bluetooth capacity (Omron M7 Intelli-IT). Uncontrolled OBP was defined as ≥140/90 mmHg, and uncontrolled HBP was defined as ≥135/85 mmHg. Results A total of 790 patients recruited by 135 doctors were analyzed (age: 64.5 ± 14.4 years, diabetics: 21.4%, smokers: 20.6%, and average number of antihypertensive drugs: 1.6 ± 0.8). OBP (137.5 ± 9.4/84.3 ± 7.7 mmHg, systolic/diastolic) was higher than HBP (130.6 ± 11.2/79.9 ± 8 mmHg; difference 6.9 ± 11.6/4.4 ± 7.6 mmHg, p Conclusions In primary care, automated OBP measurements are misleading in approximately 40% of treated hypertensive patients. HBP monitoring is mandatory to avoid overtreatment of subjects with WCH phenomenon and prevent undertreatment and subsequent excess cardiovascular disease in MUCH
- …