762 research outputs found

    Modeling scalable grid information services with Colored Peti Nets.

    Get PDF
    Information services play a crucial role in grid computing environments in that the state information of a grid system can be used to facilitate the discovery of resources and services available to meet user requirements and help tune the performance of the grid. This article models PIndex, which is a grouped peer-to-peer network with Colored Petri Nets (CPNs) for scalable grid information services. Based on the CPN model, a simulator is implemented for PIndex simulation and performance evaluation. The correctness of the simulator is further verified by comparing the results computed from the CPN model with the results generated by the PIndex simulator

    Insulin Solution Stability and Biocompatibility with Materials Used for an Implantable Insulin Delivery Device Using Reverse Phase HPLC Methods

    Get PDF
    open access articleAbstract: Insulin (Humulin® R IU500) has been delivered from an implantable artificial pancreas in diabetic rats and pigs. The artificial pancreas which was implanted in the peritoneum was fabricated from several biocompatible materials such as polycarbonate, stainless steel, polyurethane, titanium and a polyurethane resin. The device also contains a glucose responsive smart gel which controls the di usion of insulin dependent on the surrounding glucose environment. As the insulin reservoir is refillable and in contact with the device materials, assessing its biocompatibility with these various device component materials was conducted. Insulin can undergo chemical degradation mainly via a deamidation reaction on glutamine and asparagine residues rendering its biological hormone functionality. Two Reverse Phase High Performance Liquid Chromatography (RP-HPLC) methods were developed and validated for detection of insulin and degradant Asn A21 desamido insulin (method A) and insulin and degradant Asn B3 desamido insulin (method B). Material biocompatibility studies show that stainless steel and titanium are suitable for an implantable insulin delivery device design over a 31-day period. The use of polycarbonate and polyurethane could be considered if the insulin reservoir in the device was only to remain in the device for less than 11 days after which time there is a loss in cresol which acts in a protective capacity for insulin stability

    Resource monitoring with globus toolkit 4.

    Get PDF
    The past few years have seen the Grid rapidly evolving towards a service-oriented computing infrastructure. With the OGSA facilitating this evolution, it is expected that WSRF will be acting as the main an enabling technology to drive the Grid further. Resource monitoring plays a critical role in managing a large-scale Grid system. This paper presents GREMO, a lightweight resource monitor developed with Globus Toolkit 4 (GT4) for monitoring CPU and memory of computing nodes in a Windows and Linux environments

    Investigation the Stability of Water in Oil Biofuel Emulsions Using Sunflower Oil

    Get PDF
    Targets to reduce CO2 emissions by 75% and NOx emissions by 90% by 2050 in aviation have been set by The Advisory Council for Aviation Research and Innovation in Europe. Sustainable fuels, e.g., emulsified biofuel, have demonstrated promise in reducing emissions and greenhouse gases. The aim of this project is to investigate the stability of a water in oil emulsion using sunflower oil. The primary objective is to achieve an emulsion which is stable for at least 4 days, and the secondary objective is to investigate how altering the emulsification parameter values of the surfactant hydrophilic-lipophilic balance (HLB), energy density and sonotrode depth in an ultrasonication procedure can impact the stability. The stability of each emulsion was measured over a period of 14 days. The main outcome is that two of the 14 emulsions made remained stable for at least 14 days using a surfactant HLB of five, which proved to be the optimum value from those tested. The results also show that, by using the sonotrode in a higher starting position, emulsions achieved a greater stability. Furthermore, over-processing of the emulsion was determined, with the point of over-processing lying between an energy density of 75 and 200 W.s/mL

    Glucose lowering strategies with insulin

    Get PDF
    open access journalPeople with type 1 diabetes must use insulin and a large fraction of those with type 2 condition also do so. Many therefore struggle with the unpredictable balancing of insulin dose with calorie intake and utility. A healthy pancreas makes meticulous adjustment on a continuous basis that present therapeutic insulin administration cannot match. However, much progress has been made to make it simpler to inject both background and fast-acting boost insulins with a view to better mimicking normal pancreatic output. The present fast insulins are reviewed with accent on the primary amino acid structures of the biosynthetic types that diffuse more quickly than regular insulin that associates in hexamers. This makes boost doses kinetically and clinically more effective, allowing people to inject better estimated boost and corrective doses. Formulation advances are discussed for their present and potential contributions. The newer slow-acting insulins are also described and compared, their advantage also being kinetic with a lower likelihood of inducing overnight hypoglycaemia when used optimally. Finally, the appreciation of the advantages of alternative routes of administration such as oral and peritoneal are included in this review because of the possibility of altering the hepatic to peripheral ratio, the reasons for which are more effective but less obesogenic insulin activity. The logistics of oral insulin are summarised in terms of the risks to the insulin structure, the facilitation of paracellular uptake at the apical surface and the paradoxically advantageous hepatic first pass. Other non-invasive routes are also included in the review

    Immune defects in the risk of infection and response to vaccination in monoclonal gammopathy of undetermined significance and multiple myeloma

    Get PDF
    The plasma cell proliferative disorders monoclonal gammopathy of undetermined significance (MGUS) and malignant multiple myeloma (MM) are characterized by an accumulation of transformed clonal plasma cells in the bone marrow and production of monoclonal immunoglobulin. They typically affect an older population, with median age of diagnosis of approximately 70 years. In both disorders, there is an increased risk of infection due to the immunosuppressive effects of disease and conjointly of therapy in MM, and response to vaccination to counter infection is compromised. The underlying factors in a weakened immune response in MGUS and MM are as yet not fully understood. A confounding factor is the onset of normal aging, which quantitatively and qualitatively hampers humoral immunity to affect response to infection and vaccination. In this review, we examine the status of immune alterations in MGUS and MM and set these against normal aging immune responses. We focus primarily on quantitative and functional aspects of B-cell immunity. Furthermore, we review the current knowledge relating to susceptibility to infectious disease in MGUS and MM, and how efficacy of conventional vaccination is affected by proliferative disease-related and therapy-related factors

    A network-based analysis of the preterm adolescent brain using PCA and graph theory

    Get PDF
    The global increase in the rate of premature birth is of great concern since it is associated with an increase in a wide spectrum of neurologic and cognitive disorders. Neuroimaging analyses have been focused on white matter alterations in preterm subjects and findings have linked neurodevelopment impairment to white matter damage linked to premature birth. However, the trajectory of brain development into childhood and adolescence is less well described. Neuroimaging studies of extremely preterm born subjects in their adulthood are now available to investigate the long-term structural alterations of disrupted neurodevelopment. In this paper, we examine white matter pathways in the preterm adolescent brain by combining state-of-the-art diffusion techniques with graph theory and principal component analysis (PCA). Our results suggest that the pattern of connectivity is altered and differences in connectivity patterns result in more vulnerable premature brain network

    Cardiometabolic Health Among Adult Offspring of Hypertensive Pregnancies: The Cardiovascular Risk in Young Finns Study.

    Get PDF
    BACKGROUND: Cardiometabolic health among adult offspring of hypertensive disorders of pregnancy (HDP) is relatively unknown. We hypothesized that offspring of HDP would have abnormalities in the retinal microvasculature and cardiac structure by midadulthood. METHODS AND RESULTS: The Cardiovascular Risk in Young Finns Study included randomly selected children from 5 Finnish university cities. The mean age of participants was 40 years (range 34-49 years) at the time of retinal photography and cardiac assessment. Offspring born ≥37 weeks of gestation and appropriate for gestational age (n=1006) were included. Offspring of HDP had higher systolic blood pressure (β=4.68, P<0.001), body mass index (β=1.25, P=0.009), and waist circumference (β=0.25, P=0.042), compared with offspring of normotensive pregnancies. However, no differences in fasting glucose, insulin, lipid profile, carotid intima media thickness, or brachial artery flow-mediated dilatation were shown. Retinal arteriolar diameters were narrower (β=-0.43, P=0.009) and longer (β=32.5, P=0.023) and the arteriolar length-to-diameter ratio was higher (β=2.32, P=0.006) among offspring of HDP, after adjustment for age and sex. Left atrial volume indexed to body surface area (β=1.34, P=0.040) was increased. Adjustment for the confounding effects of birth weight, body mass index, smoking and socioeconomic status, and the mediating effect of hypertension had little impact on the associations. CONCLUSIONS: Abnormalities of the retinal microvasculature and cardiac structure are seen in offspring of HDP in midadulthood. These findings may need to be considered in future primary prevention strategies of cardiovascular disease among offspring of HDP

    Thermoresponsive Gels

    Get PDF
    An invited review and relates to the responsive gel used in the "artificial pancreas" work og INsmart, DMU. This article is an Open Access journal.Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology—for example, Reversible Addition Fragmentation chain Transfer (RAFT) and Atomic Transfer Radical Polymerisation (ATRP)—provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST) are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level

    How children eat may contribute to rising levels of obesity children's eating behaviours: An intergenerational study of family influences

    Get PDF
    The term ‘obesogenic environment’ is rapidly becoming part of common phraseology. However, the influence of the family and the home environment on children's eating behaviours is little understood. Research that explores the impact of this micro environment and intergenerational influences affecting children's eating behaviours is long overdue. A qualitative, grounded theory approach, incorporating focus groups and semi-structured interviews, was used to investigate the family environment and specifically, the food culture of different generations within families. What emerged was a substantive theory based on ‘ordering of eating’ that explains differences in eating behaviours within and between families. Whereas at one time family eating was highly ordered and structured, typified by the grandparent generation, nowadays family eating behaviours are more haphazard and less ordered, evidenced by the way the current generation of children eat. Most importantly, in families with an obese child eating is less ordered compared with those families with a normal weight child. Ordering of eating' is a unique concept to emerge. It shows that an understanding of the eating process is crucial to the development and improvement of interventions targeted at addressing childhood obesity within the family context
    corecore