
Resource Monitoring with Globus Toolkit 4

Vijay Sahota1, Maozhen Li1 and Wenming Guo2

1School of Engineering and Design

Brunel University, Uxbridge, UB8 3PH
Email: {Vijay.Sahota, Maozhen.Li}@brunel.ac.uk

2School of Software Engineering

Beijing University of Posts and Telecommunications
Beijing, 100876, P.R.China

Abstract

The past few years have seen the Grid rapidly evolving towards a service-oriented computing
infrastructure. With the OGSA facilitating this evolution, it is expected that WSRF will be acting as
the main an enabling technology to drive the Grid further. Resource monitoring plays a critical role
in managing a large-scale Grid system. This paper presents GREMO, a lightweight resource
monitor developed with Globus Toolkit 4 (GT4) for monitoring CPU and memory of computing
nodes in a Windows and Linux environments.

1. Introduction
The Grid [1] couples a global array of
distributed resources that require constant
monitoring if any integration and coordination
is to take place. By processing this raw
monitored data into useful information ensures
optimal use of resources, pooling them for large
capacity workloads, but still be able to work
over a heterogeneous and geographically
dispersed environment. Ease of use and
accessibility is the major factor for rapid uptake
and acceptance of Grid computing, but as usual
the commercial aspect in providing services will
have the greatest impact, but before the
commercial sector can take any interest the Grid
must provide a means of guaranteed service.
Since monitoring is a key to organising any
operations in a computing environment building
a history of resource usage, one can perform
some intelligent predictions on the state of the
network in the near future, hence enabling the
Grid to provide a guaranteed service from
predicting which services will be available.

To reach as many users as possible with global
coverage, the internet provides a universal
foundation for communication whilst using
existing technology. Its intrinsic property of
interoperability is still an issue yet to be
resolved in Grid computing. So far the general
direction of using Web services [2] has been the
main approach, to allow the Grid to operate over
the internet whilst enabling utilisation through a

standard Web browser, benefiting clients behind
firewalls. The past few years have seen the Grid
evolving rapidly towards a service-oriented
computing infrastructure. The Open Grid
Services Architecture (OGSA) [3] has
facilitated this evolution. It is expected that Web
Services Resource Framework (WSRF) [4] will
be acting as an enabling technology to drive this
further.

In this paper we present GREMO, a lightweight
resource monitor using the Globus Toolkit 4
(GT4) [5], an implementation of WSRF
standard, that included the WSN (Web Services
notification) specifications [6] to support
notifications. Currently, GREMO only monitors
CPU and Memory usage, however its design is
kept generic so that it can be applied to monitor
any Grid resource. Many have tried and
succeeded well in producing a monitoring
system that works well on a large scale network,
optimising programs that use minimal system
resources whilst working towards a real time
performance, such as Ganglia [7] and Network
Weather Service (NWS) [8], but in most cases
this entails a complex software set-up,
restriction to a certain kind of network/operating
system or a lack of the functionality to be as
easy to use and accessible as a Web page.
GREMO is implemented as a lightweight
monitoring system requiring only a standard
web server running. Using standard Web
Service technologies, it can monitor resources in
both Windows and Linux environments.

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

The rest of the paper is organised as follows:
Section 2 briefly reviews WSRF and WSN.
Section 3 introduces the design of GREMO, and
describes the main components of GREMO.
Section 4 presents some experimental results to
show the performance of GREMO. Section 5
concludes this paper.

2. WSRF and WSN
WSRF is a set of specifications that specify how
to make Web services stateful amongst other
aspects. The problem of where to store state
involved the introduction for the concept of
‘resources’ (WS-Resource); a persistent
memory for services which may reside in
memory, hard disk or even a database. Each
resource uses a unique address termed ‘endpoint
reference’ to isolate resources from services
enabling other services to use them directly with
out having to go through the parent service,
given this the introduction of other useful
functions were also created.

• WS-Resource Lifetime – manages resources

by setting a life time
• WS-Resource Properties (RPs) - many

elements to a resource, similar to an object.
• WS-Service Group- enables grouping certain

services to aid searching for them.
• WS-Base Faults- returning error exception

that may be produced by WS-Resource.
• WS-Addressing- actual address given to

services and resources rather than URL,
enables one to use resources or Web services
independently.

Finally, but key to creating a truly independent
running service, the WSN system allows
services to independently notify an authority via
a SOAP [10] message when changes in a
resources occur. Replacing the need for an
authority to systematically poll for monitoring
data, resulting in the inherent saving in time and
bandwidth and with no need for special network
conditions. Quite simply having created and
invoking the resources like standard Web
services, clients can easily be created to modify
these RPs in relation to the monitored resource
given its qualified name (qName) which is a
concatenation of the resources namespace and
RP name as a qName type.

An authority can then use their own (client) End
Point Reference (ERP) to become a subscriber,
and given the qName from which to receive
notifications registration can be set, where a
listener client will act on received notifications.
Once a notification is received, EPR and RP's
qName (from the sender) along with its new
value can be extracted form the message and

then be processed. The addition of this new
functionality also means that the WSDL [9]
documents also need to show its descriptions of
a RP, straying away from the standard format,
List 1 shows the additional code need for the
WSRF standard.

List 1: WS-Resource property definition in WSDL.

Note that the wsrp: Resource Properties
attribute of the portType element specifies
what the service's resource properties are. The
resource properties must be declared as a type
where the monitoring state information is kept.
Firstly the 'wsdlpp:extends' attribute allows the
use of predefined port types, in this example we
have used both the ‘get resource’ & ‘send
notification’ with bindings automatically
created by GT4, so there is no need to specify in
the WSDL code.

3. GREMO Architecture
Figure 1 shows GREMO architecture the
following sections describe each GREMO
components.

Figure 1: GREMO architecture.

3.1 Client Service

This service runs locally, its main function is to
provide RPs that represents the local resources
being monitored along with methods to modify
them. The notification system is used to alert the
subscriber of any changes in these RPs. In this
case the service here only has to send out
notifications (requiring a web container). Each
client with its own service means they have

<portType name="RegPortType"
 wsdlpp:extends="wsrpw:GetResourceProperty
 wsntw:NotificationProducer"
 wsrp:ResourceProperties
 ="tns:RegResourceProperties">

 <operation name="cname">
 <input message="tns:CnameInputMessage"/>
 <output message="tns:CnameOutputMessage"/>
 </operation>

</portType>

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

their own set of RPs. This approach means that
there is not a single service (server) having to be
constantly updated for each user, giving rise to
unnecessary instance and processing problems
on the receiving side, rather having the client(s)
send the notifications. The server simply
processes notifications to reduce strain and
improve flow by not having to call and wait for
a result/ response, not to mention the delay
incurred when a client gets disconnected
abruptly.

3.2 Server Service

Similar to the client service, the Server Service
provides RPs that represent registration
information of clients, with notifications sent
when a new user registers. Every time the
service is invoked a new set of RPs are created
(service instances). Each client has its own set
of RPs differing from the Client Service, here
one main service which processes all the
registration information. Since registration is
less periodic than the actual monitoring, this
seem the most economic way to create this
registry service.

3.3 Client Side Monitoring

Client registration must take place first, given
the EPR of the Server Service. The client then
invokes the Server Service modifying its RPs
allowing the server monitor to use this
information to subscribe to the monitoring RPs
managed by client. In a similar fashion, the
client monitor modifies its Client Service's RPs
in accordance to local monitored resources at
given set intervals. Both Windows and Linux
environments are accommodated to ensure cross
platform functionality. Since the information
being monitored is CPU and MEM, this
information cannot be directly accessed through
a Java Virtual Machine (JVM), hence code
native to the OS is need. In the case for the
Windows part of retrieving monitoring data,
pre-complied 'C' dll files were used along with
Java Native Interface (JNI) to access them,
where as in the case for Linux such values have
to be calculated using the /proc/ virtual file
system.

3.4 Server Side Monitoring

Here is where the bulk of the monitoring
information is processed. The code is a Java
application that uses the Server Service RPs as
registration information. Subscription to these
RPs allow the monitor to subscribe to new users
that have registered (monitoring data) as well as
adding the registering data to a buffer,
constituting of several vectors representing the
monitored data including IP addresses, usage
values of CPU and memory.

Using the IP address attached on the
notification message as a primary key, the
monitor modifies its buffers accordingly, whilst
adding the values to the mySQL database. In a
similarly fashion de-registration follows the
same pattern. Fundamental to this tool's
functionality is keeping a record of all users &
their resources, using their IP addresses as an
index for the buffers that are implemented using
multiple vectors.

3.5 Storing Monitoring Data

A mySQL table is used as a persistent storage
for the monitoring data, as it would be
inefficient to keep over 200 values (integer in
memory) for each user that can potentially run
into the thousands! From keeping the most
recent 100 values (each for CPU and memory) a
relative history can be produced along with
other useful information, but this is only
temporary since when a user logs-off their entry
is removed from the table.

Used as a buffer for the Server Monitor,
information in this table uses IP address as a
primary key index. Essential in acting as a
temporary buffer is the ability for data to
continuously loop around the set 100 fields
given for each, monitored type. This means
keeping a counter for each monitored resource,
checking if the condition has reached 100 (and
consequently around wrap back to 1), before
executing a mySQL update.

3.5 Web Interface

HTML Web pages are used for both registering
and monitoring clients. In this case an HTML
form is used as an interface to a Java Servlet
which in turn uses the Client registration class,
and Client monitoring class to start monitoring,
with a DHTML page to update the client on the
resources they were monitoring. Using similar
code as in the Server side monitor an applet
version uses mySQL connector is created
allowing a remote administrator to view the
current usage of the monitoring service.

Figure 2: A snapshot of GREMO.

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

4. GREMO Performance
GREMO is implemented with GT4 on both
Windows and Linux platforms. Figure 2 shows
a snapshot of GREMO. Ideally GREMO could
handle many hundreds of subscribed users, but
in the real case there always is usually a limiting
factor. GREMO has to processing a large
number of SOAP notification messages. Having
done a number of experimental tests, using two
Pentium IIII workstations running Windows
XP, both with 512Mb of RAM running Globus
4.0.0 container, Apache Tomcat 5.0.28 and
mySQL 4.1.15 (server monitor only). Tests
were carried out with a client sending multiple
notifications in burst of 10-500 with the
resulting average delays, lags & processing
times recorded shown in figure 3.

Figure 3: GREMO performance.

Even though testing occurred on a local
network, considerable lags and delays can be
seen which seem to increase in a linear fashion
and start to become quite considerable after
burst of 100 messages. Ideally a burst of 40
messages producing a delay and lag of 1.7 and
3.7 seconds respectively seems acceptable. This
would be the upper operation limit in this
service, making it not feasible to have more than
40 users registered. Note that these delays are
for 40 instantaneous whereas 40 users may send
40 messages over a period of time and reduce
such delays.

5. Conclusions and Future Work
In this paper we have presented GREMO and
have discussed its implementation using the
GT4-WSRF notification system. By modifying
resource properties of a Web service from
which notifications are produced, monitoring
data can be logged in a grid environment. This

service offers granularity in that subscription is
required and is dynamic, letting the GREMO
perform independently without relying on other
services to provide this information, as well as
keeping track of registered users locally.

Having defined a basic structure the possible
uses are widespread; As far as performance
goes, we have been using the GT4 notification,
which uses Apache Axis. Since at any one time
a maximum of two integers are sent, the
overhead data wise seems excessive, however,
studies have shown that the actual conversion to
and from ASCII data is very time consuming
leading to performance decreases when the
amount of data is increased [11]. Keeping this to
a minimal level is beneficiary not only in
processing time but also when network traffic is
heavy. Time stamping of data to overcome any
loss in accuracy history building still has to be
implemented.

Taking into account the results shown current
implementation of GREMO would be limited to
around 40 users. The results also show a steady
increase in lag and delay whilst processing
delay remain constant suggesting that the GT4
container was processing these notifications at
one time, storing the rest in an internal buffer.
Work to make this operate in a multiple instance
fashion (multi-threaded) will need to be carried
out if this is to be a feasible solution. In
addition, the building of a large history of
resource usage would be the next logical step
enabling external services to access this
information to aid in performance prediction
and job scheduling, producing guaranteed
execution times of jobs submitted.

References
[1] I. Foster and C. Kesselman, The Grid, Blueprint

for a New Computing Infrastructure, Morgan
Kaufmann Publishers Inc., San Francisco, USA,
1998.

[2] Web services, http://www.w3.org/2002/ws/
[3] Open Grid Services Architecture (OGSA),

http://www.globus.org/ogsa/
[4] Web Services Resource Framework (WSRF),

http://www.globus.org/wsrf/
[5] Globus toolkit 4 (GT4),

http://www.globus.org/toolkit/
[6] Web service notification, http://www-

128.ibm.com/developerworks/library/specificati
on/ws-notification/

[7] Ganglia, http://ganglia.sourceforge.net/
[8] Network Weather Service,

http://nws.cs.ucsb.edu/
[9] Web Service Description Language (WSDL),

http://nws.cs.ucsb.edu/
[10] SOAP, http://www.w3.org/TR/soap/
[11] M. Govindaraju, A. Slominski, K. Chiu, P. Liu,

R. van Engelen, M. J. Lewis: Toward
Characterizing the Performance of SOAP
Toolkits. GRID 2004: 365-372

0

10

20

30

40

50

60

0 200 400 600
Number of messages

O
ve

rh
ea

d
in

 s
ec

on
ds

delay
process delay
lag

Proceedings of the Second International
Conference on Semantics, Knowledge, and Grid (SKG'06)
0-7695-2673-X/06 $20.00 © 2006

