431 research outputs found

    Designing chromatic optical retarder stacks for segmented next-generation easySTED phase plates

    Get PDF
    Fluorescence nanoscopy methods based on the RESOLFT principle, such as beam-scanning STED nanoscopy, require the co-alignment of optical beams for molecular state (on/off) switching and fluorescence excitation. The complexity and stability of the beam alignment can be drastically simplified and improved by using a single-mode fibre as the sole light source for all required laser beams. This in turn then requires a chromatic optical element for shaping the off-switching beam into a focal-plane donut while simultaneously leaving the focal intensity distributions at other wavelengths shaped as regular focal spots. Here we describe novel designs of such so-called ‘easySTED phase plates’ and provide a rationale how to find the desired spectral signature for combinations of multiple wavelengths

    Using Whole Genome Analysis to Examine Recombination across Diverse Sequence Types of Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is an important clinical pathogen worldwide and understanding this organism\u27s phylogeny and, in particular, the role of recombination, is important both to understand the overall spread of virulent lineages and to characterize outbreaks. To further elucidate the phylogeny of S. aureus, 35 diverse strains were sequenced using whole genome sequencing. In addition, 29 publicly available whole genome sequences were included to create a single nucleotide polymorphism (SNP)-based phylogenetic tree encompassing 11 distinct lineages. All strains of a particular sequence type fell into the same clade with clear groupings of the major clonal complexes of CC8, CC5, CC30, CC45 and CC1. Using a novel analysis method, we plotted the homoplasy density and SNP density across the whole genome and found evidence of recombination throughout the entire chromosome, but when we examined individual clonal lineages we found very little recombination. However, when we analyzed three branches of multiple lineages, we saw intermediate and differing levels of recombination between them. These data demonstrate that in S. aureus, recombination occurs across major lineages that subsequently expand in a clonal manner. Estimated mutation rates for the CC8 and CC5 lineages were different from each other. While the CC8 lineage rate was similar to previous studies, the CC5 lineage was 100-fold greater. Fifty known virulence genes were screened in all genomes in silico to determine their distribution across major clades. Thirty-three genes were present variably across clades, most of which were not constrained by ancestry, indicating horizontal gene transfer or gene loss

    Community Survey Report: Lekhnath 2, Rithepani

    Get PDF
    Community diagnosis is defined as the pattern of disease in a community described in terms of the important factors which influence the pattern -King Maurice ed (1982). It is based on collection and interpretation of the relevant data such as age, sex, population distribution by social groups, vital statistics and incidence and prevalence of important diseases of the area.  As per the curriculum of Tribhuvan University, B.Sc Nursing 1st year, we were provided an opportunity to fulfill the practicum of community health nursing in the city of seven lakes of Rithepani-2, Lekhnath, Kaski from July 17th to Aug 11th 2016. Total population of Rithepani ward no 2 was 4529, male population was 2100 and female population was 2429 respectively. Each of the five students was assigned with ten different families for community diagnosis in order to promote the health of the individual, family and community.  The main objective of community diagnosis was to find out the health related aspects and to provide preventive, promotive curative and rehabilitative services to the individual and community as a whole. All the findings were presented among the key members of the community. On survey total population of 50 houses was found 239, among them 126 were male population and 113 were female population. Sanitation of the community was found appropriate. Moreover immunization services among under five children was adequate. Likewise, antenatal, intranatal and postnatal care was found appropriate and effective in all the houses. This signifies that people are utilizing the all health services in an appropriate manner. Journal of Gandaki Medical College Vol. 10, No. 1, 2017, Page: 63-6

    Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis

    Get PDF
    Macrophages specialize in removing lipids and debris present in the atherosclerotic plaque. However, plaque progression renders macrophages unable to degrade exogenous atherogenic material and endogenous cargo including dysfunctional proteins and organelles. Here we show that a decline in the autophagy-lysosome system contributes to this as evidenced by a derangement in key autophagy markers in both mouse and human atherosclerotic plaques. By augmenting macrophage TFEB, the master transcriptional regulator of autophagy-lysosomal biogenesis, we can reverse the autophagy dysfunction of plaques, enhance aggrephagy of p62-enriched protein aggregates and blunt macrophage apoptosis and pro-inflammatory IL-1ÎČ levels, leading to reduced atherosclerosis. In order to harness this degradative response therapeutically, we also describe a natural sugar called trehalose as an inducer of macrophage autophagy-lysosomal biogenesis and show trehalose's ability to recapitulate the atheroprotective properties of macrophage TFEB overexpression. Our data support this practical method of enhancing the degradative capacity of macrophages as a therapy for atherosclerotic vascular disease

    Population gene introgression and high genome plasticity for the zoonotic pathogen Streptococcus agalactiae

    Get PDF
    The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacteria populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated twelve major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan-genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of eleven populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation
    • 

    corecore