10 research outputs found
Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors
We demonstrate, for the first time to our knowledge, a Brillouin optical timedomain analysis (BOTDA) sensor that is able to operate with a probe power larger than the Brillouin threshold of the deployed sensing fiber and that is free from detrimental nonlocal effects. The technique is based on a dual-probe-sideband setup in which an optical frequency modulation of the probe waves along the fiber is introduced. This makes the optical frequency of the Brillouin interactions induced by each probe wave on the pump vary along the fiber so that two broadband Brillouin gain and loss spectra that perfectly compensate are created. As a consequence, the pulse spectral components remain undistorted, avoiding nonlocal effects. Therefore, very large probe power can be injected, which improves the signal-to-noise ratio (SNR) in detection for long-range BOTDA. Moreover, the probe power can even exceed the Brillouin threshold limit due to its frequency modulation, which reduces the effective amplification of spontaneous Brillouin scattering in the fiber. Experiments demonstrate the technique in a 50-km sensing link in which 8 dBm of probe power is injected.This work was supported by the Universidad Pública de Navarra, by the Universidad de Cantabria, and by the
Spanish Ministerio de Ciencia e Innovación through project TEC2013-47264-C2 and Feder funds
Overcoming non-local effects and Brillouin threshold limitations in Brillouin distributed sensors
We demonstrate, for the first time to our knowledge, a Brillouin optical time domain analysis sensor that is able to operate with a probe power larger than the Brillouin threshold of the deployed sensing fiber and that is free from detrimental non-local effects. The technique is based on a dual-probe-sideband setup in which a frequency modulation of the probes waves along the fiber is introduced. This makes the frequency of maximum interaction between pump and probes to vary along the fiber, thus mitigating the pump pulse depletion and making it possible to use very large probe power, which brings an improved signal-to-noise ratio in detection
High mortality rate in COVID-19 patients with myeloproliferative neoplasms after abrupt withdrawal of ruxolitinib
: We report the clinical presentation and risk factors for survival in 175 patients with myeloproliferative neoplasms (MPN) and COVID-19, diagnosed between February and June 2020. After a median follow-up of 50 days, mortality was higher than in the general population and reached 48% in myelofibrosis (MF). Univariate analysis, showed a significant relationship between death and age, male gender, decreased lymphocyte counts, need for respiratory support, comorbidities and diagnosis of MF, while no association with essential thrombocythemia (ET), polycythemia vera (PV), and prefibrotic-PMF (pre-PMF) was found. Regarding MPN-directed therapy ongoing at the time of COVID-19 diagnosis, Ruxolitinib (Ruxo) was significantly more frequent in patients who died in comparison with survivors (p = 0.006). Conversely, multivariable analysis found no effect of Ruxo alone on mortality, but highlighted an increased risk of death in the 11 out of 45 patients who discontinued treatment. These findings were also confirmed in a propensity score matching analysis. In conclusion, we found a high risk of mortality during COVID-19 infection among MPN patients, especially in MF patients and/or discontinuing Ruxo at COVID-19 diagnosis. These findings call for deeper investigation on the role of Ruxo treatment and its interruption, in affecting mortality in MPN patients with COVID-19
Among classic myeloproliferative neoplasms, essential thrombocythemia is associated with the greatest risk of venous thromboembolism during COVID-19
In a multicenter European retrospective study including 162 patients with COVID-19 occurring in essential thrombocythemia (ET, n = 48), polycythemia vera (PV, n = 42), myelofibrosis (MF, n = 56), and prefibrotic myelofibrosis (pre-PMF, n = 16), 15 major thromboses (3 arterial and 12 venous) were registered in 14 patients, of whom all, but one, were receiving LMW-heparin prophylaxis. After adjustment for the competing risk of death, the cumulative incidence of arterial and venous thromboembolic events (VTE) reached 8.5% after 60 days follow-up. Of note, 8 of 12 VTE were seen in ET. Interestingly, at COVID-19 diagnosis, MPN patients had significantly lower platelet count (p < 0.0001) than in the pre-COVID last follow-up.This decline was remarkably higher in ET (-23.3%, p < 0.0001) than in PV (-16.4%, p = 0.1730) and was associated with higher mortality rate (p = 0.0010) for pneumonia. The effects of possible predictors of thrombosis, selected from those clinically relevant and statistically significant in univariate analysis, were examined in a multivariate model. Independent risk factors were transfer to ICU (SHR = 3.73, p = 0.029), neutrophil/lymphocyte ratio (SHR = 1.1, p = 0.001) and ET phenotype (SHR = 4.37, p = 0.006). The enhanced susceptibility to ET-associated VTE and the associated higher mortality for pneumonia may recognize a common biological plausibility and deserve to be delved to tailor new antithrombotic regimens including antiplatelet drugs.The study was also supported by HARMONY PLUS, which is funded through the Innovative Medicines Initiative (IMI), Europe’s largest public–private initiative aiming to speed up the development of better and safer medicines for patients. The HARMONY Alliance has received funding from IMI 2 Joint Undertaking and is listed under grant agreement No. 945406. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation Program and the European Federation of Pharmaceutical Industries and Associations (EFPIA). IMI supports collaborative research projects and builds networks of industrial and academic experts in order to boost pharmaceutical innovation in Europe
Among classic myeloproliferative neoplasms, essential thrombocythemia is associated with the greatest risk of venous thromboembolism during COVID-19
In a multicenter European retrospective study including 162 patients with COVID-19 occurring in essential thrombocythemia (ET, n = 48), polycythemia vera (PV, n = 42), myelofibrosis (MF, n = 56), and prefibrotic myelofibrosis (pre-PMF, n = 16), 15 major thromboses (3 arterial and 12 venous) were registered in 14 patients, of whom all, but one, were receiving LMW-heparin prophylaxis. After adjustment for the competing risk of death, the cumulative incidence of arterial and venous thromboembolic events (VTE) reached 8.5% after 60 days follow-up. Of note, 8 of 12 VTE were seen in ET. Interestingly, at COVID-19 diagnosis, MPN patients had significantly lower platelet count (p < 0.0001) than in the pre-COVID last follow-up.This decline was remarkably higher in ET (−23.3%, p < 0.0001) than in PV (−16.4%, p = 0.1730) and was associated with higher mortality rate (p = 0.0010) for pneumonia. The effects of possible predictors of thrombosis, selected from those clinically relevant and statistically significant in univariate analysis, were examined in a multivariate model. Independent risk factors were transfer to ICU (SHR = 3.73, p = 0.029), neutrophil/lymphocyte ratio (SHR = 1.1, p = 0.001) and ET phenotype (SHR = 4.37, p = 0.006). The enhanced susceptibility to ET-associated VTE and the associated higher mortality for pneumonia may recognize a common biological plausibility and deserve to be delved to tailor new antithrombotic regimens including antiplatelet drugs