27 research outputs found

    Why Rice Farmers Don't Sail: Coastal Subsistence Traditions and Maritime Trends in Early China

    Get PDF
    The Lower Yangtze River Valley is a key region for the early development of rice farming and the emergence of wet rice paddy field systems. Subsistence evidence from Neolithic sites in this area highlights the importance of freshwater wetlands for both plant and animal food resources. Early Neolithic rice cultivators looked inland, especially to wetlands and nearby woodlands, for their main protein sources. Links to the sea among these Neolithic populations are notably scarce. Due to the high yields of wet rice, compared with other staple crops as well as dryland rice, the wetland rice focused subsistence strategy of the Lower Yangtze would have supported high, and increasing, local population densities. Paddy agriculture demands labor input and water management on a large scale, which would have stimulated and reinforced trends towards more complex societies, such as that represented by Liangzhu in the lower Yangtze region. Population growth could have been largely absorbed locally, suggesting that population packing, not migration, was the dominant trend. Other case studies of agricultural dispersal, for the Korean Peninsula and Japan further illustrate the lack of correlation between the spread of rice agriculture and wet rice cultivation. Although wet rice cultivation was a pull factor that drew local populations towards increased density and increased social complexity, it did not apparently push groups to migrate outwards. Instead, the transition from wetland to rain fed rice cultivation systems and/or the integration of rice with rain fed millet crops are much more likely to have driven the demographic dynamics that underpin early farmer migrations and crop dispersal

    Evolutionary History of Helicobacter pylori Sequences Reflect Past Human Migrations in Southeast Asia

    Get PDF
    The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia

    Modelling the Geographical Origin of Rice Cultivation in Asia Using the Rice Archaeological Database

    Get PDF
    We have compiled an extensive database of archaeological evidence for rice across Asia, including 400 sites from mainland East Asia, Southeast Asia and South Asia. This dataset is used to compare several models for the geographical origins of rice cultivation and infer the most likely region(s) for its origins and subsequent outward diffusion. The approach is based on regression modelling wherein goodness of fit is obtained from power law quantile regressions of the archaeologically inferred age versus a least-cost distance from the putative origin(s). The Fast Marching method is used to estimate the least-cost distances based on simple geographical features. The origin region that best fits the archaeobotanical data is also compared to other hypothetical geographical origins derived from the literature, including from genetics, archaeology and historical linguistics. The model that best fits all available archaeological evidence is a dual origin model with two centres for the cultivation and dispersal of rice focused on the Middle Yangtze and the Lower Yangtze valleys

    Between China and South Asia: A Middle Asian corridor of crop dispersal and agricultural innovation in the Bronze Age

    Get PDF
    © The Author(s) 2016. The period from the late third millennium BC to the start of the first millennium AD witnesses the first steps towards food globalization in which a significant number of important crops and animals, independently domesticated within China, India, Africa and West Asia, traversed Central Asia greatly increasing Eurasian agricultural diversity. This paper utilizes an archaeobotanical database (AsCAD), to explore evidence for these crop translocations along southern and northern routes of interaction between east and west. To begin, crop translocations from the Near East across India and Central Asia are examined for wheat (Triticum aestivum) and barley (Hordeum vulgare) from the eighth to the second millennia BC when they reach China. The case of pulses and flax (Linum usitatissimum) that only complete this journey in Han times (206 BC–AD 220), often never fully adopted, is also addressed. The discussion then turns to the Chinese millets, Panicum miliaceum and Setaria italica, peaches (Amygdalus persica) and apricots (Armeniaca vulgaris), tracing their movement from the fifth millennium to the second millennium BC when the Panicum miliaceum reaches Europe and Setaria italica Northern India, with peaches and apricots present in Kashmir and Swat. Finally, the translocation of japonica rice from China to India that gave rise to indica rice is considered, possibly dating to the second millennium BC. The routes these crops travelled include those to the north via the Inner Asia Mountain Corridor, across Middle Asia, where there is good evidence for wheat, barley and the Chinese millets. The case for japonica rice, apricots and peaches is less clear, and the northern route is contrasted with that through northeast India, Tibet and west China. Not all these journeys were synchronous, and this paper highlights the selective long-distance transport of crops as an alternative to demic-diffusion of farmers with a defined crop package

    Chinese "Left" = Tibeto-Burman "Hot, Pain"

    No full text

    Neighbour-nets portray the Chinese dialect continuum and the linguistic legacy of China's demic history

    No full text
    As with species studied by evolutionary biologists, languages are evolving entities. They can evolve in tree-like patterns, possibly blurred by borrowing, but they can also develop in non-tree-like schemes. For instance, diglossia, as in the case of Chinese, can counterbalance the hierarchical pattern expected from differentiation by internal change associated with isolation by distance of speech communities. Using two lexical datasets, either the basic lexicon supposedly more immune to borrowing or a representative sample of the whole lexicon, we investigate the development pattern of Chinese dialects using a neighbour-net approach, which is an unprejudiced technique for representing object relationships. The resulting graphs are consistent with a dialect continuum shaped by counterbalanced effects of homogenizing diglossia and borrowing versus differentiating spread of speech communities. Historical events and linguistic claims can be mapped on these graphs

    New insights from Thailand into the maternal genetic history of Mainland Southeast Asia

    Get PDF
    Tai-Kadai (TK) is one of the major language families in Mainland Southeast Asia (MSEA), with a concentration in the area of Thailand and Laos. Our previous study of 1234 mtDNA genome sequences supported a demic diffusion scenario in the spread of TK languages from southern China to Laos as well as northern and northeastern Thailand. Here we add an additional 560 mtDNA genomes from 22 groups, with a focus on the TK-speaking central Thai people and the Sino-Tibetan speaking Karen. We find extensive diversity, including 62 haplogroups not reported previously from this region. Demic diffusion is still a preferable scenario for central Thais, emphasizing the expansion of TK people through MSEA, although there is also some support for gene flow between central Thai and native Austroasiatic speaking Mon and Khmer. We also tested competing models concerning the genetic relationships of groups from the major MSEA languages, and found support for an ancestral relationship of TK and Austronesian-speaking groups
    corecore