8 research outputs found
Ozone responses in Arabidopsis : beyond stomatal conductance
Tropospheric ozone (O-3) is a major air pollutant that decreases yield of important crops worldwide. Despite long-lasting research of its negative effects on plants, there are many gaps in our knowledge on how plants respond to O-3. In this study, we used natural variation in the model plant Arabidopsis (Arabidopsis thaliana) to characterize molecular and physiological mechanisms underlying O-3 sensitivity. A key parameter in models for O-3 damage is stomatal uptake. Here we show that the extent of O-3 damage in the sensitive Arabidopsis accession Shahdara (Sha) does not correspond with O-3 uptake, pointing toward stomata-independent mechanisms for the development of O-3 damage. We compared tolerant (Col-0) versus sensitive accessions (Sha, Cvi-0) in assays related to photosynthesis, cell death, antioxidants, and transcriptional regulation. Acute O-3 exposure increased cell death, development of lesions in the leaves, and decreased photosynthesis in sensitive accessions. In both Sha and Cvi-0, O-3-induced lesions were associated with decreased maximal chlorophyll fluorescence and low quantum yield of electron transfer from Photosystem II to plastoquinone. However, O-3-induced repression of photosynthesis in these two O-3-sensitive accessions developed in different ways. We demonstrate that O-3 sensitivity in Arabidopsis is influenced by genetic diversity given that Sha and Cvi-0 developed accession-specific transcriptional responses to O-3. Our findings advance the understanding of plant responses to O-3 and set a framework for future studies to characterize molecular and physiological mechanisms allowing plants to respond to high O-3 levels in the atmosphere as a result of high air pollution and climate change.Peer reviewe
Nonstop mRNAs generate a ground state of mitochondrial gene expression noise
Funding Information: This work was supported by the Academy of Finland (307431 and 314706 to B.J.B.), the Sigrid Juselius Foundation Senior Investigator Award to B.J.B., and United Mitochondrial Disease Foundation (PI-16-0598 to B.J.B.) and donations from the Hereditary Neuropathy Foundation, Lindsey Flynt, and Medtronic to B.J.B.; the Orion Research Foundation and the Finnish Cultural Foundation to K.Y.N.; the Academy of Finland (321961 to U.R.); the Sigrid Juselius Foundation, the Academy of Finland (331556), and the Jane and Aatos Erkko Foundation to C.D.D.; Action Medical Research (GN2494 to W.G.N.) and the Manchester NIHR Biomedical Research Centre (IS-BRC-1215-20007 to W.G.N.); the Wellcome Centre for Mitochondrial Research (203105/Z/16/Z to R.W.T.), the Mitochondrial Disease Patient Cohort (UK) (G0800674 to R.W.T.), the Medical Research Council International Centre for Genomic Medicine in Neuromuscular Disease (MR/S005021/1 to R.W.T.), the Lily Foundation, the UK NIHR Biomedical Research Centre for Ageing and Age-related disease award to the Newcastle upon Tyne Foundation Hospitals NHS Trust, the Pathological Society, and the UK NHS Highly Specialised Service for Rare Mitochondrial Disorders of Adults and Children to R.W.T.; Medical Research Council (MR/W019027/1 to W.G.N. and R.W.T.); the Academy of Finland (338836 and 314672 to V.O.P.); and the Sigrid Juselius Foundation and the Jane and Aatos Erkko Foundation. Publisher Copyright: Copyright © 2022 The Authors, some rights reserved;A stop codon within the mRNA facilitates coordinated termination of protein synthesis, releasing the nascent polypeptide from the ribosome. This essential step in gene expression is impeded with transcripts lacking a stop codon, generating nonstop ribosome complexes. Here, we use deep sequencing to investigate sources of nonstop mRNAs generated from the human mitochondrial genome. We identify diverse types of nonstop mRNAs on mitochondrial ribosomes that are resistant to translation termination by canonical release factors. Failure to resolve these aberrations by the mitochondrial release factor in rescue (MTRFR) imparts a negative regulatory effect on protein synthesis that is associated with human disease. Our findings reveal a source of underlying noise in mitochondrial gene expression and the importance of responsive ribosome quality control mechanisms for cell fitness and human health.Peer reviewe
Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch
Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe
Recommended from our members
Author Correction: Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch.
In the version of this article initially published, there was a mistake in the calculation of the nucleotide mutation rate per site per generation: 1 × 10−9 mutations per site per generation was used, whereas 9.5 × 10−9 was correct. This error affects the interpretation of population-size changes over time and their possible correspondence with known geological events, as shown in the original Fig. 4 and supporting discussion in the text, as well as details in the Supplementary Note. Neither the data themselves nor any other results are affected. Figure 4 has been revised accordingly. Images of the original and corrected figure panels are shown in the correction notice
Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch
Abstract
Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A
Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch
Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A