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Abstract
Tropospheric ozone (O3) is a major air pollutant that decreases yield of important crops worldwide. Despite long-lasting re-
search of its negative effects on plants, there are many gaps in our knowledge on how plants respond to O3. In this study,
we used natural variation in the model plant Arabidopsis (Arabidopsis thaliana) to characterize molecular and physiological
mechanisms underlying O3 sensitivity. A key parameter in models for O3 damage is stomatal uptake. Here we show that
the extent of O3 damage in the sensitive Arabidopsis accession Shahdara (Sha) does not correspond with O3 uptake, point-
ing toward stomata-independent mechanisms for the development of O3 damage. We compared tolerant (Col-0) versus
sensitive accessions (Sha, Cvi-0) in assays related to photosynthesis, cell death, antioxidants, and transcriptional regulation.
Acute O3 exposure increased cell death, development of lesions in the leaves, and decreased photosynthesis in sensitive
accessions. In both Sha and Cvi-0, O3-induced lesions were associated with decreased maximal chlorophyll fluorescence
and low quantum yield of electron transfer from Photosystem II to plastoquinone. However, O3-induced repression of pho-
tosynthesis in these two O3-sensitive accessions developed in different ways. We demonstrate that O3 sensitivity in
Arabidopsis is influenced by genetic diversity given that Sha and Cvi-0 developed accession-specific transcriptional
responses to O3. Our findings advance the understanding of plant responses to O3 and set a framework for future studies
to characterize molecular and physiological mechanisms allowing plants to respond to high O3 levels in the atmosphere as
a result of high air pollution and climate change.
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Introduction
Plants are continuously exposed to adverse environmental
conditions that impair growth and fitness (Suzuki et al., 2014).
Ozone (O3) is a phytotoxic air pollutant that reduces the yield
of important crops worldwide (Ainsworth et al., 2012). O3

enters the plant through stomata and in the apoplast it breaks
down into reactive oxygen species (ROS), such as superoxide
(O–

2 ) and hydrogen peroxide (H2O2; Ainsworth, 2017;
Waszczak et al., 2018). Depending on the O3 concentration,
sensitive plant species activate cell death programs leading to
the development of lesions (Brosché et al., 2010; Langebartels
et al., 2002). O3 and most abiotic and biotic stresses increase
the formation of ROS with potentially deleterious toxic effects
on DNA, proteins, lipids, and carbohydrates. However, ROS are
not merely damaging molecules, as they also initiate signaling
events that help plants acclimate to stress (Jaspers and
Kangasjärvi, 2010; Waszczak et al., 2018).

Plants actively produce ROS as signaling molecules to reg-
ulate developmental and defense programs (Huang et al.,
2019). One of the earliest detectable responses in defense
against pathogens and abiotic stresses is increased apoplastic
ROS production (often referred to a ROS burst; Shimada
et al., 2003; Choudhury et al., 2017; Qi et al., 2017). As treat-
ments with O3 allow a controlled delivery of apoplastic ROS
to plants without further manipulation, O3 is a very useful
tool to study general mechanisms of ROS signaling and its
role in cell death, defense signaling, and regulation of gene
expression (Vainonen and Kangasjärvi, 2015; Xu et al.,
2015a). Apoplastic ROS signaling triggered by O3 induces
large scale changes in gene expression and metabolic profiles
(Blomster et al., 2011; Xu et al., 2015a). However, mechanis-
tic understanding of how ROS regulate gene expression is
very limited as only few specific components of ROS signal-
ing have been deciphered in plants. Overall, studies with O3

can fulfill two goals at the same time: (1) How do plants
protect themselves against this air pollutant? and (2) How
do plants use ROS to regulate defense signaling?

The large genetic variation between naturally occurring pop-
ulations/accessions of Arabidopsis (Arabidopsis thaliana) pro-
vides a unique resource to study the complex mechanisms
underlying stress tolerance. Arabidopsis accessions display dif-
ferent O3 sensitivity which is largely explained by stomatal
conductance regulating O3 uptake and cell death in O3 sensi-
tive genotypes (Brosché et al., 2010; Xu et al., 2015b). The O3

sensitive accession from the Cape Verde islands Cvi-0 (hereaf-
ter, Cvi) has constitutively high stomatal conductance and in-
creased O3 uptake caused by impaired function of MITOGEN-
ACTIVATED PROTEIN KINASE12 (Brosché et al., 2010;
Jakobson et al., 2016). Mutant analysis in Arabidopsis showed
that O3 activates an abscisic acid (ABA) signaling pathway
that ultimately leads to stomatal closure through SLOW
ANION CHANNEL1 (Merilo et al., 2013). In addition, several
Arabidopsis mutants with increased stomatal conductance dis-
play O3 sensitivity (Overmyer et al., 2008; H~orak et al., 2016;
Sierla et al., 2018). However, O3 responses in Arabidopsis are
very complex and clearly involve other physiological functions

in addition to stomatal opening (Overmyer et al., 2008). Thus,
further characterization of O3 responses in sensitive
Arabidopsis accessions is needed to unravel genetic and mo-
lecular mechanisms underlying O3 sensitivity in plants.

Shahdara (Sha), an Arabidopsis accession from Tajikistan in
Central Asia was identified as highly O3 sensitive (Brosché et al.,
2010). Sha is also tolerant to drought and salt stress, has low
chlorophyll content, and low levels of ABA (Bouchabka et al.,
2008; Sharma et al., 2013; Szyma�nska et al., 2015; Kalladan et al.,
2019). Thus, given its O3 sensitivity and altered stress
responses, Sha is a good candidate to reveal mechanisms of
plant O3 responses.

A consistent physiological O3 response across many plant spe-
cies and O3 doses is a decreased rate of photosynthesis and re-
duced expression of photosynthesis-related genes (Fiscus et al.,
2005; Wittig et al., 2007; Kontunen-Soppela et al., 2010a;
Vainonen and Kangasjärvi, 2015). High O3 concentrations reduce
the abundance of photosynthetic proteins and pigments, which
decrease photosynthetic rates, growth, and biomass production
(Ainsworth et al., 2012; Ainsworth, 2017). The use of chlorophyll
a fluorescence (ChlF) measurements has allowed the assessment
of photosynthesis under different stress conditions including O3

(Baker, 2008; Bussotti et al., 2011). Measured ChlF parameters in
several tree species indicated that O3 can affect activities of both
Photosystems II and I (PSII and PSI, accordingly; Bussotti et al.,
2011). However, in most such studies, the spatiotemporal resolu-
tion of ChlF analyses was insufficient to gain insight into kinetics
and mechanisms of O3-induced damage to photosynthesis.

Transcriptional reprogramming is an early response in
plants exposed to abiotic and biotic stresses (Atkinson and
Erwin, 2012). Transcriptional responses to O3 have been
studied in several species: Arabidopsis (Blomster et al., 2011;
Brosché et al., 2014; Xu et al., 2015a), rice (Oryza sativa L;
Ashrafuzzaman et al., 2018), silver birch (Betula pendula
Roth; Kontunen-Soppela et al., 2010b), and Medicago
(Medicago truncatula; Iyer et al., 2013). Mutant analysis in
Arabidopsis identified regulators of O3-induced transcrip-
tional responses, including the plant stress hormones ethyl-
ene, salicylic acid (SA) and jasmonic acid (Xu et al., 2015a).
Furthermore, cell death induced by O3 in Arabidopsis
requires altered transcriptional programs (Overmyer et al.,
2005). Plants use a large number of transcription factors
(TFs) to regulate changes in gene expression (Khan et al.,
2018; Tian et al., 2019). In relation to O3, TFs from the fami-
lies ETHYLENE RESPONSE FACTORS (ERF) , TGA, and
WRKY regulate some aspects of the O3 response (Xu et al.,
2015a). However, several more unidentified TFs are likely to
be involved (Xu et al., 2015a).

In this study, we characterized molecular and physiological
mechanisms underlying O3 sensitivity and ROS signaling in
Arabidopsis. To that end, we designed a series of experi-
ments with Arabidopsis accessions having different O3 sensi-
tivities including Col-0 (hereafter, Col) as O3 tolerant, and
Sha and Cvi as O3 sensitive. O3 sensitivity was characterized
by measuring stomatal conductance, photosynthetic
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performance, abundance of antioxidants, and changes in
gene expression.

Results

O3 sensitivity in Sha is associated with increased cell
death
O3 sensitivity in Sha was first characterized by measuring
cell death under various O3 doses. Exposure to 350 nL L–1 of
O3 for 6 h induced a significantly higher percentage of cell
death in Sha than in Col (P5 0.001; Figure 1A). Cell death
in Sha also corresponded to increased lesion area in the
leaves as compared with Col (Figure 1B). Exposure to 200
and 250 nL L–1 of O3 for 6 h also increased cell death and
lesion formation in Sha leaves as compared with Col
(P5 0.05; Supplemental Figure S1). Previous research indi-
cated that Arabidopsis mutants with lower concentration of
the antioxidant ascorbic acid (AA) are O3 sensitive (Conklin
et al., 2000). AA measurements showed that Sha contained
approximately 20% lower levels of AA and dehydroascorbic
acid than Col both under CA and O3 350 nL L–1 for 2 h
(Supplemental Figure S2).

O3 sensitivity in Sha was not linked to high
stomatal conductance
Several O3-sensitive Arabidopsis accessions display high sto-
matal conductance and high O3 uptake during the first 30
min of acute O3 exposure, traits that are positively corre-
lated with O3-induced cell death (Brosché et al., 2010). To
assess the relationship of gas exchange parameters with the
O3 sensitivity in Sha, 3 weeks old plants were exposed to O3

and stomatal conductance, rate of O3 uptake and cumula-
tive O3 dose were measured during 4 h (Figure 2, A and B).
Col and Sha had similar stomatal conductance in control
conditions (Figure 2A, Supplemental Figure S3). In response

to O3, Col had a rapid drop in stomatal conductance (re-
ferred to as rapid transient decrease), followed by reopening
of stomata and finally, a sustained decrease in stomatal con-
ductance (Vahisalu et al., 2010). After O3 exposure, both Col
and Sha showed the same rapid decrease in stomatal con-
ductance (Figure 2A; Supplemental Figure S3A); however,
while Col recovered its stomatal conductance, this response
was much weaker in Sha. Although the stomatal uptake
rate was slightly different in Col and Sha after 16 and 32
min of O3 onset, both genotypes received the same cumula-
tive O3 doses during the first 48 min of O3 exposure
(Figure 2B; Supplemental Figure S3, B and C). In the contin-
ued O3 exposure, stomatal conductance in Sha eventually
dropped to very low values, while Col still maintained �30%
of stomatal conductance. Consequently, Sha plants had
lower O3 uptake and lower total cumulative O3 dose as
compared with Col plants (Figure 2B; Supplemental Figure
S3, B and C). This indicates that O3 sensitivity in Sha is regu-
lated through stomata-independent mechanisms.

Photosynthesis is severely impaired in Sha by O3

To assess the direct O3 effects on photosynthetic activity in
Sha, we first measured net photosynthesis using gas ex-
change in three weeks old plants exposed to O3 for 4 h.
Despite considerably reduced stomatal conductance during
O3 exposure (Figure 2A), Col maintained its photosynthetic
activity. As plants for gas exchange were grown in relatively
low light conditions (150 mE), decreased CO2 uptake
through reduced stomatal apertures was probably not a lim-
itation for photosynthesis (Tanaka et al., 2013). In contrast
to Col, net photosynthesis started to progressively decline in
Sha approximately 2 h after the onset of the O3 treatment
(Figure 2C; Supplemental Figure S3D). Importantly, Col dis-
played higher net photosynthesis than Sha at approximately

Sha

CA

Col

O3

0

4

8

12

16

20

24

28

32

Col

***

Sha

CA
O3

Io
n 

le
ak

ag
e 

(%
)

Genotype

BA

Figure 1 O3 response in Col and Sha plants exposed to 350 nL L–1 of O3 during 6 h. A, Cell death measurements with ion leakage in CA control
and O3 treated plants. Mean of four independent experiments ± SE is shown (n = 32). The asterisks denote significant differences (P5 0.001) be-
tween O3-induced cell death in Col and Sha assessed with the function fit.contrast from gmodels 2.18.1 (Warnes et al., 2018). B, Representative
pictures taken 24 h after the O3 exposure was finished (scale bar 1cm).

182 | PLANT PHYSIOLOGY 2021: 186; 180–192 Morales et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/article/186/1/180/6149142 by Viikki Science Library user on 05 O

ctober 2021

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab097#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab097#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab097#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab097#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab097#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab097#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab097#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab097#supplementary-data


the same values of stomatal conductance (256 min after O3

onset for Col and 144 min for Sha; Figure 2, A and C).
This suggested that the decline of photosynthesis in Sha was
not related to stomatal function.

In relation to O3, photosynthetic traits are usually mea-
sured in the whole plant or organ (i.e. leaf) after the speci-
fied time of exposure. However, by increasing the
spatiotemporal resolution of the measurements, new
insights can be gained into what aspects of photosynthesis
are the O3 targets. We performed real-time monitoring of
the O3-induced changes of photosynthesis using Pulse
Amplitude Modulated (PAM) ChlF imaging. In addition to
Sha, we included Cvi as a second O3-sensitive accession and
compared photosynthetic parameters with those in the O3-
tolerant Col. Two-week-old plants were exposed to O3 and
ChlF was monitored from the onset of the O3 treatment.
Against the background actinic light, saturating light pulses
were given every 10 min to image maximal fluorescence,
Fm
0. After 1.5–2 h of O3 exposure, local lesions developed in

Sha leaves. These lesions were originally only visible as
depressions of Fm

0 (Figure 3). Notably, the lesions developed
in a short time window of 10 min or less, and at the early
stage did not coincide with changes in basal light-adapted
fluorescence (Fs; white arrows in Figure 3). Quantification of
the effective quantum yield of PSII photochemistry (uPSII)
revealed difference in photosynthetic electron transfer be-
tween the three accessions. No change of uPSII was ob-
served in Col; however, massive drop of uPSII occurred in
rosettes of Cvi, while in Sha uPSII originally decreased only
within the local lesions (Figure 3C). During the following
hour, the Sha lesions expanded, ultimately leading to leaf tis-
sue collapse. This later stage was accompanied by rising Fs,
the characteristic feature of disassembling photosynthetic
apparatus. In Sha, rising Fs was accompanied with temporary
partial recovery of Fm

0, this effect was much less pronounced
in Cvi (Figure 3B).

Quenching of Fm
0 is referred to as nonphotochemical

quenching (NPQ). The two main constituents of NPQ are
the energy-dependent quenching (qE) associated with acidi-
fication of thylakoids and photoinhibitory quenching (qI)
caused by damage to PSII (Baker, 2008). The difference be-
tween qE and qI can be revealed by dark adaptation. The qE
component dissipates within 10–30 min of darkness, while
qI takes longer time to recover. Thus, the PAM imaging pro-
tocol was modified to include 30-min dark periods, over
which recovery of Fm was followed with saturating light
pulses given once in 5 min (Figure 4A). We selected lesions
that had formed just prior to a dark period and extracted
kinetics for these areas in all imaged Sha plants (white arrow
in Figure 4A). In these lesions, dark recovery of Fm was in-
complete as compared with the undamaged leaf areas. This
suggested that the initial drop in Fm

0 was likely associated
with PSII damage, and not with the qE component of NPQ
(Figure 4A). Moreover, in the lesioned areas Fm continued to
decline during the dark period, indicating inhibition of PSII
activity. The fact that inhibition occurred in darkness hinted
that O3 exposure triggered programmed light-independent
deterioration of photosynthesis.

As a complementary approach, we measured ultra-fast ki-
netics of ChlF rise (OJIP) in Col, Sha, and Cvi during a 4 h
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O3 exposure (Figure 4B). In essence, this method relies on
time-resolved recording of ChlF rise during a saturating light
flash. On a logarithmic time axis, this rise reveals inflections
Fj and Fi. The rise of fluorescence from Fo to Fj is usually as-
sociated with progressive reduction of PSII primary quinone
electron acceptor QA. The Fj–Fi rise is related to reduction
of intersystem electron carriers between PSII and
Photosystem I (PSI). Finally, the rise from Fi to Fp (= Fm)
corresponds to reduction of electron acceptors downstream
from PSI such as ferredoxin (Bussotti et al., 2011; Stirbet and
Govindjee, 2011, 2012). Only small changes in OJIP kinetics
were observed in Col, suggesting little effect of the O3 treat-
ment on photosynthetic electron transfer. In Cvi, dramatic
drop of all OJIP phases was detected over the course of O3

exposure, while Sha demonstrated intermediate response.
Importantly, both in Cvi and Sha the O3-induced decrease
in fluorescence was observed as early as at the Fo–Fj phase
(i.e. within 1 ms of OJIP kinetics; Figure 4B). The effects of
the qE component of NPQ on OJIP kinetics are known to
develop after several hundred milliseconds of illumination
(Antal et al., 2011; Shapiguzov et al., 2019). This supported
the idea that the O3-induced quenching of ChlF was not as-
sociated with qE (Figure 4, A and B).

The shape of OJIP kinetics assessed in O3 lesions was dif-
ferent between Sha and Cvi (Figure 4C). In Cvi, the decline
in Fi–Fm phase occurred faster than in Sha, while the decline

in Fo–Fj was similar in the two accessions. This suggested
that Cvi experienced more rapid changes in electron transfer
through PSI, than Sha. The parameter uET2o = 1 – (Fj/Fm)
depending on both Fj and Fm has been associated with
quantum yield of electron transfer from PSII to plastoqui-
none (Stirbet and Govindjee, 2011; Küpper et al., 2019). O3

damage lowered uET2o both in Cvi and in Sha, but the ef-
fect was more pronounced in Cvi (Figure 4D). Taken to-
gether, these results indicated that the inhibitory effect of
O3 on photosynthetic functions was mainly associated with
PSII damage, and not with the qE component of NPQ. The
different OJIP profiles indicate that inhibition of photosyn-
thesis was occurring through different mechanisms in Sha
and Cvi. Overall, the measurements of photosynthesis sug-
gested that O3 exposure caused programmed decrease of
photosynthesis that affected different steps of photosyn-
thetic electron transfer in different accessions.

O3 triggers unique patterns of gene expression in
sensitive Arabidopsis accessions
To gain further insights into mechanisms behind O3 sensitiv-
ity, we monitored O3-induced changes in transcriptome in
plants exposed to O3 for 2 h with RNAseq. The Sha data
were analyzed together with RNAseq data from Col and Cvi
with the same O3 treatment. Multidimensional scaling plot
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of the RNAseq data shows clear separation of gene expres-
sion patterns detected for the three genotypes (Figure 5A).

The O3 effects on transcript levels were determined by
performing differential gene expression analysis between

clean air (CA) control and O3 treatments by genotype.
The analysis identified 3,972, 5,243, and 5,099 genes with in-
creased transcript accumulation after 2 h O3 exposure in
Col, Sha, and Cvi, respectively (FDR 4 0.05, log2FC 5 1.2;
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Figure 5B and Supplemental Table S1). Approximately a half
of the genes with increased transcript levels were shared be-
tween the three accessions. From the other half, almost 78%
of the genes were either unique to Sha or Cvi or shared be-
tween them (Figure 5B). O3 decreased the accumulation of
4,915, 4,041, and 6,796 transcripts in Col, Sha, and Cvi,

respectively (FDR 4 0.05, log2FC 4 1.2, Figure 5C and
Supplemental Table S1). Nearly 42% of genes with decreased
transcript levels were common between the three acces-
sions. In addition, each genotype had unique genes with de-
creased transcript levels: 437, 186, and 1,878 genes in Col,
Sha, and Cvi, respectively (Figure 5, A and C).
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Figure 5 Transcriptional responses induced by O3 in Col, Sha, and Cvi. The 3.5-week-old plants were exposed to 350 nL L–1 of O3 for 2 h, and
changes in transcript accumulation were measured with RNAseq (n = 3). A, Multidimensional scaling plot of the data, and (B and C) overlap be-
tween genes with increased and decreased expression after the O3 treatment, respectively.
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A major rationale for studies in Arabidopsis is that infor-
mation gained in this model plant should be informative
also for other plant species. We used O3 transcriptome data
from Medicago [70 nL L–1, 6 h per day for 6 d (Iyer et al.,
2013)) and from rice (108 nL L–1, 7 h per day for 8 d
(Ashrafuzzaman et al., 2018)) and compared similarities in
O3 responses between the species. Despite the differences in
O3 treatments, the expression of Arabidopsis orthologues in-
duced by O3 in Medicago and rice had 51% and 67% over-
lap respectively with Arabidopsis genes (Supplemental
Figure S4A). For genes with decreased expression after O3,
Medicago and rice had 62% overlap with Arabidopsis
(Supplemental Figure S4B).

We next performed gene ontology (GO) enrichment
analysis to get further understanding of the physiological
processes regulated by genes differentially expressed by the
O3 treatment. Figure 6 shows selected common and unique
biological processes regulated by O3; the complete list of sig-
nificantly enriched GO terms is provided in Supplemental
Table S2. The three accessions shared activation of hormone
signaling, for example, response to SA, JA, ethylene, and
ABA, regulation of cell death and response to ROS
(Figure 6). In relation to chloroplast function, transcript lev-
els decreased for nuclear encoded chloroplast localized pro-
teins, photosynthesis, and carotenoid biosynthesis genes in
Col, Sha, and Cvi, respectively (Figure 6). However, the num-
ber of genes enriched in these GO categories was higher in
Sha than in Cvi and Col. This indicates a greater impact of
O3 on the expression of photosynthesis-related components
in Sha (Figure 6; Supplemental Table S2).

For genes responding to O3 exclusively in Sha and Cvi
(Figure 5, B and C), different biological processes were
enriched in the two accessions (Figure 6; Supplemental
Table S3). Genes annotated to mRNA and protein catabolic
processes, fatty acid, and lipid metabolism among others
had increased transcript levels only in Sha (Figure 6;
Supplemental Table S3). The increased transcript levels for
flavonoid biosynthesis genes observed in Col was absent in
both O3-sensitive accessions (Figure 6). In addition, Sha and
Cvi had decreased expression levels of genes involved in
H2O2 catabolism. In agreement with differences in stomatal
function previously reported for Cvi and Col (Brosché et al.,
2010), Cvi displayed misregulation of genes involved in sto-
mata movements that were otherwise induced by O3 in Col
and Sha (Figure 6; Supplemental Tables S2 and S3).

Regulation of gene expression in response to stress
involves multiple signaling pathways and downstream TFs
(Xu et al., 2015a). Large-scale experiments have identified
the binding sites of many TFs (O’Malley et al., 2016) and cu-
rated databases for TFs and binding sites (TF2Network;
Kulkarni et al., 2017). We imported the lists of genes differ-
entially expressed into TF2Network, and identified 729 (Col),
682 (Sha), and 684 (Cvi) TFs as potential regulators of genes
with increased transcript abundance under O3

(Supplemental Table S4). The three accessions shared 86%
of the TFs identified (Supplemental Table S5). Members of

the TF families WRKY, ERF, MYB, GATA, and CAMTA,
which bind promoter elements of O3-responsive genes (Xu
et al., 2015a), were detected as regulators of genes induced
by O3 in Col, Sha, and Cvi (Supplemental Table S5). More
than 21% of genes encoding the enriched TFs were them-
selves induced by O3: 155 in Col, 180 in Sha, and 181 in Cvi.
Out of these, 22, 25, and 21 O3-responsive TFs were distinc-
tively regulated in in Col, Sha, and Cvi, respectively
(Supplemental Table S6). Genes encoding regulators of SA
signaling (WRKY38) and two members of the NAC (for
NAM [No Apical Meristem], ATAF1-2 [Arabidopsis thaliana
Transcription Activation Factor1-2], and CUC2 [Cup-Shaped
Cotyledon2]) TF family (ANAC04 and ANAC068) were highly
induced by O3 only in Sha (logFC 4 3; Supplemental Table
S6). The analysis also identified 487 (Col), 417 (Sha), and 480
(Cvi) TFs that bind to promoter elements of genes with de-
creased transcript accumulation by the O3 treatment
(Supplemental Table S5). Approximately 75% of these TFs
were common between the three accessions indicating simi-
lar patterns of gene regulation in response to O3

(Supplemental Table S5). Genes encoding the enriched TFs
showed also lower transcript accumulation under the O3

treatment. Sha had the lowest proportion of TFs downregu-
lated by O3 (16.5%) as compared with Col (23.2%) and Cvi
(27.2%; Supplemental Table S6).

Discussion
Natural variation offers possibilities to investigate stress
responses that extend beyond those defined with standard
laboratory strains. As a model plant, Arabidopsis has been
fundamental to understand plant development and stress
responses. However, a vast majority of experiments use the
accession Col. As Col represents only a limited part of the
genetic variation present in Arabidopsis (Alonso-Blanco
et al., 2016), the use of additional natural Arabidopsis acces-
sions allows the discovery of mechanisms involved in stress/
O3 responses. Previously, we associated O3 sensitivity in Cvi
and other Arabidopsis accessions with more open stomata
leading to high O3 uptake (Brosché et al., 2010). Similarly,
models for predicting plant O3 damage rely on O3 uptake
rates (Fiscus et al., 2005; Mills et al., 2018). In contrast, here
we show that O3 sensitivity in Sha is not because of in-
creased stomatal conductance or high O3 uptake (Figure 2).
Hence, in Sha other mechanisms contribute to its O3 sensi-
tivity that is independent from stomatal function. Previous
research with AA-deficient mutants (Col background;
Conklin et al., 2000) revealed O3 sensitivity when AA was 1/
3 to 1/4 compared with wild-type concentration. It is possi-
ble that the lower concentration of AA and dehydroascorbic
acid detected in Sha (Supplemental Figure S2) contribute to
its O3 response. However, it is unlikely that AA is the main
determinant of Sha O3 sensitivity given the lack of signifi-
cant effects of the O3 treatment on AA levels in both
genotypes.

Photosynthesis and chloroplast functions are known O3

targets in plants (Clyde Hill and Littlefield, 1969; Fiscus et al.,
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2005; Bussotti et al., 2011). Our PAM and OJIP measure-
ments revealed that in response to acute O3 treatments,
photosynthesis was robustly maintained in Col, but de-
creased in sensitive genotypes, which coincided with devel-
opment of lesions in the leaves. Both in Sha and in Cvi,
O3-induced lesions were associated with decreased maximal
ChlF in light and darkness (Fm

0 and Fm, accordingly). This ef-
fect has been previously observed, however, in the earlier
studies the question whether this was due to the qE or qI
component of NPQ, was not fully resolved (Fiscus et al.,
2005). Our results indicated that the nature of ChlF de-
creased in Sha and Cvi was not related to energy-dependent
NPQ (Figures 3, 4). OJIP imaging suggested that the damage
was associated with altered electron transfer through PSI
and with decreased quantum yield of electron transfer from
PSII to plastoquinone. Interestingly, repression of photosyn-
thesis developed in different ways in Sha and Cvi.
Importantly, O3-induced decay of photosynthetic functions
continued in darkness. Light-independent PSII damage has
previously been associated with heat stress and over-
reduction of plastoquinone pool (Marutani et al., 2012). Our
results suggest that similar effects may occur in Sha in re-
sponse to O3. In maize (Zea mays L), the effect of O3 on
photosynthesis was dependent on genotype, that is, it is a
heritable trait, and improved photosynthesis is a possible
target in breeding for O3 tolerance (Ainsworth, 2017;
Choquette et al., 2019). Our results in Cvi and Sha refine the
direct target of O3 in photosynthesis and can help design
new screens for O3 tolerance. Previous studies have also in-
dicated the potential for combining phenotyping methods
using ChlF with high-throughput genotyping methods as a
promising approach for elucidating the basis for O3 toler-
ance in sensitive crops (Ainsworth et al., 2014). As photo-
synthesis can be monitored in vivo with high space and
time resolution, we propose that our photosynthetic meas-
urements could be useful in large-scale phenotyping and
breeding programs.

The O3 treatments used in Arabidopsis typically include
higher doses and shorter exposure times than those used in
crop species; however, even if experiments with Arabidopsis
use relatively high levels of O3, they are still relevant to un-
derstand plant O3 responses at lower doses. The O3 tran-
scriptional responses determined in this study had 450%
overlap with O3 regulated genes in Medicago (Iyer et al.,
2013) and rice (Ashrafuzzaman et al., 2018; Supplemental
Figure S4). Furthermore, mechanisms first identified with
high O3 treatments in Arabidopsis have been key to under-
stand plant defenses at lower doses in other plant species,
for example, the identification of AA-deficient Arabidopsis
mutants (Conklin et al., 2000).

In addition to the large overlap in O3-regulated transcripts
between accessions, we also show accession-specific
responses (Figures 5 and 6; Supplemental Tables S1–S6).
Our data indicate that impaired regulation of genes involved
in flavonoid biosynthesis and ROS metabolism may

contribute to O3 sensitivity in Sha and Cvi. Furthermore, O3

sensitivity in Sha could be mediated by additional mecha-
nisms that involve transcriptional regulation of genes with
catalytic functions (Figure 6; Supplemental Table S2). These
differences in gene expression between Sha and Cvi under
O3 further indicate that O3 sensitivity in Arabidopsis is con-
trolled by multiple mechanisms at the level of transcription.
One mechanism could involve the activation of different
TFs as indicated in our data (Supplemental Table S6). We
identified candidate regulators of genes responding in Sha
and Cvi, some of them being highly induced by the O3

treatment. Future studies exploring the roles of these TFs in
O3 responses will help to understand O3 sensitivity and ROS
signaling in plants.

In response to changes in the environment, plants activate
signaling pathways to alter transcriptional responses.
Application of a chemical that inhibits RNA polymerase II
leads to a reduction of O3-induced cell death (Overmyer
et al., 2005). This directly demonstrates that altered tran-
scription is an important aspect of plant responses to O3.
The breakdown of O3 in the apoplast to various ROS acti-
vates the plant enzymatic machinery for further ROS pro-
duction (Wohlgemuth et al., 2002; Ainsworth, 2017). Active
production of apoplastic ROS is triggered by several stresses
and is a prominent feature in the defense against pathogens
(Qi et al., 2017). Accordingly, there is a large overlap in path-
ogen- and O3-regulated transcriptional changes (Vaahtera
et al., 2013; Xu et al., 2015a; Vuorinen et al., 2020). In agree-
ment with these previous studies, we report in the three
accessions the O3-induced expression of genes involved in
defense response to pathogens including fungus and bacte-
ria, to wounding and to several abiotic stresses such as
drought, heat and high light (Supplemental Table S2). The
ROS burst produced under many stresses could also, at least
partially, explain the phenomenon of cross-tolerance, where
treatment with one stress confers tolerance to other stresses
(Perez and Brown, 2014). For example, pretreatment with
O3 confers tolerance to virus infection (Sudhakar et al.,
2007). Thus, the identification of mechanisms regulating
plant O3 responses has broad implications for understanding
plant defense responses, which go beyond the role of O3 as
an air pollutant.

In summary, our study reinforces the importance of ge-
netic variation as a tool to unravel molecular mechanisms
of plant responses to O3. We show that these reactions are
complex and mediated by multiple mechanisms, as different
O3-sensitive accessions display different molecular and physi-
ological responses to O3. Furthermore, our data demonstrate
that mechanisms independent of stomatal conductance are
also key in these processes. Our findings set a framework for
future studies aiming at characterizing molecular and physi-
ological mechanisms allowing plants to respond to high O3

levels in the atmosphere as a result of high air pollution and
climate change.
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Materials and methods

Plant material and growth conditions
Seeds of the Arabidopsis (A. thaliana) accessions Col, Sha,
and Cvi were obtained from Nottingham Arabidopsis Stock
Center. Seeds of all genotypes used in the experiments were
harvested from plants grown under the same conditions.
Seeds were sown on 1:1 peat/vermiculite, stratified for 3 d,
and then grown at 22/19�C (day/night) for a week. For cell
death and transcript accumulation measurements, four gem-
inated seedlings were transplanted into 8 � 8 cm2 pots con-
taining fresh 1:1 peat/vermiculite mixture. For
photosynthesis measurements, plants were transplanted to a
tray containing six pots. Subsequently, plants were grown in
controlled environment chambers (Weiss Bio1300; Weiss
Gallenkamp) under short day conditions (12/12 h d/night
photoperiod) with 250 lmol m–2 s–1 irradiance at 22�C/
18�C (day/night) and 70%/90% relative humidity. All plants
were grown under the same conditions until they were used
for the experiments. Plants used for gas-exchange experi-
ments were grown as previously described (Kollist et al.,
2007).

O3 treatments and cell death measurements
Three-week-old Col and Sha plants were exposed to O3

(350–423 nL L–1) in parallel with CA controls that consisted
of unfiltered ambient air with normal background O3 con-
centrations 10–20 nL L–1, which have no effects on plants
(Overmyer et al., 2000). The exposure times ranged from 2
to 6 h depending on the measured response.

O3-induced cell death was quantified in plants exposed to
O3 200–350 nL L–1 for 6 h. From five to eight individual
rosettes per O3-treated and CA controls were harvested and
soaked into 12 mL of Milli-Q water for 18 h. Thereafter,
electrolyte leakage was measured with a conductivity meter
(Model FE30; Mettler Toledo, Germany). The total electro-
lyte content was measured after freeze–thawing and data
are expressed as percentage of total ions. The experiments
were repeated four times.

Stomatal conductance and gas exchange
measurements
Steady-state stomatal conductance and photosynthesis rate
were measured from Col and Sha plants under controlled
conditions with a GFS-3000 gas exchange system (Walz,
Effeltrich, Germany) using a whole Arabidopsis rosette cu-
vette. Stomatal conductance was also measured using a
Delta-T Device porometer with a clip-on cuvette (Model
AP4; www.delta-t.co.uk). For O3-induced stomatal closure
and the diurnal stomatal aperture experiments, gas ex-
change was monitored with a custom-built gas exchange de-
vice, and data analyzed as previously described (Kollist et al.,
2007).

Spectroscopic measurements of photosynthesis
Photosynthetic performance was imaged with PAM ChlF im-
aging (Imaging-PAM, M-series; Heinz Walz, Germany) and a

FluorCam FC 800-C/1010 CUST with Fast Camera TOMI-3
(P.S.I., Czech Republic; Küpper et al., 2019; Shapiguzov et al.,
2020). Col, Sha, and Cvi seedlings were transplanted 1 week
after germination to a tray containing six pots and grown
under 220–250 mmol m–2 s–1 and a 12/12 h d/night photo-
period for a week. The 2- to 3-week-old plants were treated
with O3 directly inside the imaging devices. Imaging was per-
formed in the morning. For PAM imaging, the minimal (Fo)
and maximal (Fm) fluorescences were determined before the
lights turned on. Then actinic light (200 mmol m–2 s–1) was
generated by the device light-emitting diode (LED) light
sources. O3 exposure started 1.5 h after the onset of actinic
light. Saturating flashes were triggered every 10 min to assess
maximal fluorescence under light (Fm

0). The effective quan-
tum yield of PSII photochemistry (uPSII) was calculated as
uPSII = (Fm

0 – Fs)/Fm
0 (Genty et al., 1989). The kinetics of

ChlF was normalized to Fo. For the imaging of OJIP (Fo, Fj, Fi,
Fp) transients, plants were shifted in the morning from
growth light conditions to the imaging system that was pre-
equilibrated with O3 (350 nL L–1). Immediately after the
shift, the plants were dark-adapted for 10 min, after which
OJIP at time 0 was imaged. Then consecutive 30-min peri-
ods of actinic light (200 mmol m–2 s–1) started, each fol-
lowed by a 10-min dark adaptation and OJIP imaging. The
OJIP imaging protocol included three measurements of the
background signal, then three 20-ms flashes of saturating
light for Fo measurement and finally a saturating flash (1.2 s
of 3,500 mmol m–2 s–1). During the saturating flash, images
were recorded at 0, 0.3, 0.6, 0.9 . . . 5.1 ms; 5.4, 7.8, 10.2 . . .
101, 4 ms; 102, 132, 162 . . . 1,092 ms following the start of
the pulse. Three background and three Fo values were
averaged.

RNA sequencing
The 3-week-old Col, Sha, and Cvi plants were exposed to O3

350 nL L–1 and CA for 2 h. Four rosettes per treatment and
genotype were harvested immediately after exposure, snap-
frozen in liquid nitrogen and stored at –80�C until analyzed.
Total RNA was extracted with TRIzol (Invitrogen). RNA
quality was checked with Agilent 2100 Bioanalyzer and the
concentration measured with nanodrop ND-1000
(NanoDrop Technologies). RNAseq library preparation and
sequencing were performed at the Institute of
Biotechnology, University of Helsinki using three biological
replicates. Libraries were constructed using TruSeq Standed
mRNA Sample PrepKit (Illumina) following manufacturer’s
instructions. The library concentration was measured using
Qubit Fluorometer, and the quality and size were checked
by Fragment Analyzer (Advanced Analytical, AATI). Libraries
were sequenced on NextSeq 500 (Illumina).

RNAseq data analysis was done in Chipster (Kallio et al.,
2011) and in R (R Development Core Team 2018), version
3.5.0. The quality of raw reads was inspected in Chipster
with FastQC (Andrews, 2014). Removal of adapter sequen-
ces, trimming and cropping of the reads was done using
Trimmomatic-0.33 (Bolger et al., 2014) in single-end mode.
The bases with a Phred quality score less than 20 were
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trimmed from the ends of the reads and reads shorter than
30 bases were removed from the analysis (-phred33,
TRAILING:20 and MINLEN:30). Filtered reads were mapped
to the Arabidopsis transcript reference database AtRTD2
(Zhang et al., 2017) using Kallisto V-0.43.0 (CMD:quant; Bray
et al., 2016) with 4,000 bootstrap sets. The final count table
for each biological replicate was obtained as the mean of
the bootstrap runs. The count table was used as input to
edgeR (v 3.14.0; Robinson et al., 2009) to carry out differen-
tial gene expression analysis. Genes with no expression were
removed and the filtered count table was normalized using
the default Trimmed Mean of M-values. The glmLRT
method was used to fit the statistical model in edgeR, and
Benjamini–Hochberg false-discovery rate correction of P-val-
ues was used to adjust for multiple testing, with false discov-
ery rate (FDR) 40.05 as significance threshold.

The overlap between lists of genes differentially expressed
genes by O3 was visualized in jvenn (Bardou et al., 2014).
Venn diagrams were also used to compare genes induced by
acute O3 exposure in our study with Arabidopsis ortho-
logues regulated by chronic O3 exposure in Medicago (Iyer
et al., 2013) and in rice (O. sativa L; Ashrafuzzaman et al.,
2018). Arabidopsis orthologs from Medicago (M. truncatula)
were reported in (Iyer et al., 2013) and those from rice were
obtained from the Rice Genome Annotation Project (http://
rice.plantbiology.msu.edu/home_overview.shtml). GO term
enrichment was performed using clusterProfiler (Yu et al.,
2012). The ratio of enrichment, that is the proportion of the
total genes annotated to a given GO category which are sig-
nificantly enriched in a particular gene set, was calculated by
dividing the clusterProfiler estimated parameters gene ratio
by the background ratio.

Genes differentially expressed by the O3 treatment were
further analyzed by searching for promoter elements in their
promoter regions. Enrichment of promoter elements was
implemented in TF2Network including 1,793 curated bind-
ing site elements corresponding to 916 TFs (Kulkarni et al.,
2017).

AA measurements
The concentrations of total AA and dehydroascorbate were
determined spectrophotometrically according to (Gillespie
and Ainsworth, 2007). Three-week-old Col and Sha plants
were exposed to 350 nL L–1 of O3 or CA for 2 h.
Measurements from fresh leaves were performed immedi-
ately after the O3 treatment.

Statistical analysis
Statistical analysis was performed in R. Linear mixed-effects
models with replicates as random-grouping factors were fit-
ted and two-way analysis of variance was calculated using
function lme from package ‘nlme’ (Pinheiro et al., 2018).
Function fit.contrast from package gmodels 2.18.1 ( Warnes
et al., 2018) was used to fit pairwise contrasts defined a pri-
ori and P-values adjusted with the function p.adjust. Figures
were plotted using ggplot2 (Wickham, 2009).

Accession number
RNAseq raw data were deposited at Gene Expression
Omnibus with the accession numbers (GSE65740 and
GSE117052).

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. O3 response in Col and Sha
plants treated with two different doses of O3 for 6 h.

Supplemental Figure S2. Ascorbic acid measurements in
Col and Sha plants exposed to 350 nL L–1 O3 for 2 h.

Supplemental Figure S3. Gas exchange parameters in Col
and Sha subjected to O3 treatments.

Supplemental Figure S4. Identification of common O3

regulated genes in Arabidopsis, Medicago, and rice.
Supplemental Table S1. List of differentially expressed

genes in Col, Sha and Cvi after 2 h O3 (350 nL L–1) treat-
ment as determined with RNAseq (EdgeR, FDR 4 0.05).

Supplemental Table S2. List of significantly enriched GO
terms associated to differentially expressed genes (FDR 4
0.05).

Supplemental Table S3. List of significantly enriched GO
terms associated to O3 regulated genes exclusively in Sha
and Cvi (FDR 4 0.05).

Supplemental Table S4. List of transcription factors
whose motifs were significantly enriched in the promoter of
differentially expressed genes (FDR 4 0.05).

Supplemental Table S5. Overlap between TFs predicted
to regulate the expression of genes responding to the O3

treatment.
Supplemental Table S6. Overlap between genes encoding

TFs predicted as regulators in the enrichment analysis which
were differentially expressed by the O3 treatment.
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