111 research outputs found

    Slow Food al Vallès Oriental

    Get PDF

    Combined kinetic and DFT studies on the stabilization of the pyramidal form of H3PO2 at the heterometal site of [Mo3M’S4(H2O)10]4+ clusters (M’= Pd, Ni)

    Get PDF
    Kinetic and DFT studies have been carried out on the reaction of the [Mo3M’S4(H2O)10]4+ clusters (M’= Pd, Ni) with H3PO2 to form the [Mo3M’(pyr-H3PO2)S4(H2O)9]4+ complexes, in which the rare pyramidal form of H3PO2 is stabilized by coordination to the M’ site of the clusters. The reaction proceeds with biphasic kinetics, both steps showing a first order dependence with respect to H3PO2. These results are interpreted in terms of a mechanism that involves an initial substitution step in which one tetrahedral H3PO2 molecule coordinates to M’ through the oxygen atom of the P=O bond, followed by a second step that consists in tautomerization of coordinated H3PO2 assisted by a second H3PO2 molecule. DFT studies have been carried out to obtain information on the details of both kinetic steps, the major finding being that the role of the additional H3PO2 molecule in the second step consists in catalysing a hydrogen shift from phosphorus to oxygen in O-coordinated H3PO2, which is made possible by its capability of accepting a proton from P-H to form H4PO2 + and then transfer it to the oxygen. DFT studies have been also carried out on the reaction at the Mo centres to understand the reasons that make these metal centres ineffective for promoting tautomerizatio

    Catalytic Hydrogenation of Azobenzene in the Presence of a Cuboidal Mo3S4 Cluster via an Uncommon Sulfur-Based H2 Activation Mechanism

    Get PDF
    Azobenzene hydrogenation is catalyzed under moderate conditions by a cuboidal Mo3(μ3-S)(μ-S)3 diamino complex via a cluster catalysis mechanism. Dihydrogen activation by the molecular [Mo3(μ3-S)(μ-S)3Cl3(dmen)3]+ cluster cation takes place at the μ-S bridging atoms without direct participation of the metals in clear contrast with classical concepts. The reaction occurs with the formation of 1,2-diphenylhydrazine as an intermediate with similar appearance and disappearance rate constants. On the basis of DFT calculations, a mechanism is proposed in which formation of 1,2-diphenylhydrazine and aniline occurs through two interconnected catalytic cycles that share a common reaction step that involves H2 addition to two of the bridging sulfur atoms of the catalyst to form a dithiolate Mo3(μ3-S)(μ-SH)2)(μ-S) adduct. Both catalytic cycles have similar activation barriers, in agreement with the experimental observation of close rate constant values. Microkinetic modeling of the process leads to computed concentration–time profiles in excellent agreement with the experimental ones providing additional support to the calculated reaction mechanism. Slight modifications on the experimental conditions of the catalytic protocol in combination with theoretical calculations discard a direct participation of the metal on the reaction mechanism. The effect of the ancillary ligands on the catalytic activity of the cluster fully agrees with the present mechanistic proposal. The results herein demonstrate the capability of molybdenum sulfide materials to activate hydrogen through an uncommon sulfur based mechanism opening attractive possibilities toward their applications as catalysts in other hydrogenation processes

    Base-Free Catalytic Hydrogen Production from Formic Acid Mediated by a Cubane-Type Mo3S4 Cluster Hydride

    Get PDF
    Formic acid (FA) dehydrogenation is an attractive process in the implementation of a hydrogen economy. To make this process greener and less costly, the interest nowadays is moving toward non-noble metal catalysts and additive-free protocols. Efficient protocols using earth abundant first row transition metals, mostly iron, have been developed, but other metals, such as molybdenum, remain practically unexplored. Herein, we present the transformation of FA to form H2 and CO2 through a cluster catalysis mechanism mediated by a cuboidal [Mo3S4H3(dmpe)3]+ hydride cluster in the absence of base or any other additive. Our catalyst has proved to be more active and selective than the other molybdenum compounds reported to date for this purpose. Kinetic studies, reaction monitoring, and isolation of the [Mo3S4(OCHO)3(dmpe)3]+ formate reaction intermediate, in combination with DFT calculations, have allowed us to formulate an unambiguous mechanism of FA dehydrogenation. Kinetic studies indicate that the reaction at temperatures up to 60 °C ends at the triformate complex and occurs in a single kinetic step, which can be interpreted in terms of statistical kinetics at the three metal centers. The process starts with the formation of a dihydrogen-bonded species with Mo–H···HOOCH bonds, detected by NMR techniques, followed by hydrogen release and formate coordination. Whereas this process is favored at temperatures up to 60 °C, the subsequent β-hydride elimination that allows for the CO2 release and closes the catalytic cycle is only completed at higher temperatures. The cycle also operates starting from the [Mo3S4(OCHO)3(dmpe)3]+ formate intermediate, again with preservation of the cluster integrity, which adds our proposal to the list of the infrequent cluster catalysis reaction mechanisms.Funding for open access charge: CRUE-Universitat Jaume

    Efficient (Z)-selective semihydrogenation of alkynes catalyzed by air-stable imidazolyl amino molybdenum cluster sulfides

    Get PDF
    Imidazolyl amino cuboidal Mo3(μ3-S)(μ-S)3 clusters have been investigated as catalysts for the semihydrogenation of alkynes. For that purpose, three new air-stable cluster salts [Mo3S4Cl3(ImNH2)3]BF4 ([1]BF4), [Mo3S4Cl3(ImNH(CH3))3]BF4 ([2]BF4) and [Mo3S4Cl3(ImN(CH3)2)3]BF4 ([3]BF4) have been isolated in moderate to high yields and fully characterized. Crystal structures of complexes [1]PF6 and [2]Cl confirm the formation of a single isomer in which the nitrogen atoms of the three imidazolyl groups of the ligands are located trans to the capping sulfur atom which leaves the three bridging sulfur centers on one side of the trimetallic plane while the amino groups lie on the opposite side. Kinetic studies show that the cluster bridging sulfurs react with diphenylacetylene (dpa) in a reversible equilibrium to form the corresponding dithiolene adduct. Formation of this adduct is postulated as the first step in the catalytic semihydrogenation of alkynes mediated by molybdenum sulfides. These complexes catalyze the (Z)-selective semihydrogenation of diphenylacetylene (dpa) under hydrogen in the absence of any additives. The catalytic activity lowers sequentially upon replacement of the hydrogen atoms of the N–H2 moiety in 1+ without reaching inhibition. Mechanistic experiments support a sulfur centered mechanism without participation of the amino groups. Different diphenylacetylene derivatives are selectively hydrogenated using complex 1+ to their corresponding Z-alkenes in excellent yields. Extension of this protocol to 3,7,11,15-tetramethylhexadec-1-yn-3-ol, an essential intermediate for the production of vitamin E, affords the semihydrogenation product in very good yield

    1st international experts' meeting on agitation. Conclusions regarding the current and ideal management paradigm of agitation

    Get PDF
    Agitation is a heterogeneous concept without a uniformly accepted definition, however, it is generally considered as a state of cognitive and motor hyperactivity characterized by excessive or inappropriate motor or verbal activity with marked emotional arousal. Not only the definition but also other aspects of agitated patients' care are still unsolved and need consensus and improvement. To help the discussion about agitation among experts and improve the identification, management, and treatment of agitation, the 1st International Experts' Meeting on Agitation was held in October 2016 in Madrid. It was attended by 20 experts from Europe and Latin America with broad experience in the clinical management of agitated patients. The present document summarizes the key conclusions of this meeting and highlights the need for an updated protocol of agitation management and treatment, the promotion of education and training among healthcare professionals to improve the care of these patients and the necessity to generate clinical data of agitated episodes

    Bifunctional W/NH Cuboidal Aminophosphino W3S4 Cluster Hydrides: The Puzzling Behaviour behind the Hydridic-Protonic Interplay

    Get PDF
    The novel [W3S4H3(edpp)3]+ (edpp=(2-aminoethyl)diphenylphosphine) (1+) cluster hydride with an acidic −NH2 functionality has been synthetized and studied. Its crystal structure shows the characteristic incomplete W3S4 cubane core with the outer positions occupied by the P and N atoms of the edpp ligands. Although no signal due to the hydride ligands is observed in the 1H NMR spectrum, hydride assignment is supported by 1H-15N HSQC techniques, the changes in the 31P{1H} NMR chemical shift, and FT-IR spectra in the W−H region of the deuterated [W3S4D2H(edpp)3]+ (1+-d2) samples. Moreover, all NMR evidences suggest that one of the hydrogen atoms of the NH2 group in 1+ is rapidly exchanging with the hydride. The reaction of 1+ with acids (HCl, HBr and DCl) features complex polyphasic kinetics with zero-order dependence with respect to the acid concentration, being also independent of the solvent nature. This behavior differs from that of their diphosphino analogues, suggesting a different mechanism

    Predicting language learners' grades in the L1, L2, L3 and L4: the effect of some psychological and sociocognitive variables

    Get PDF
    This study of 89 Flemish high-school students' grades for L1 (Dutch), L2 (French), L3 (English) and L4 (German) investigates the effects of three higher-level personality dimensions (psychoticism, extraversion, neuroticism), one lower-level personality dimension (foreign language anxiety) and sociobiographical variables (gender, social class) on the participants' language grades. Analyses of variance revealed no significant effects of the higher-level personality dimensions on grades. Participants with high levels of foreign language anxiety obtained significantly lower grades in the L2 and L3. Gender and social class had no effect. Strong positive correlations between grades in the different languages could point to an underlying sociocognitive dimension. The implications of these findings are discussed

    Electrochemical oxidation of meglumine in a pharmaceutical formulation using a nanocomposite anode

    Get PDF
    The electrocatalytic oxidation of meglumine and gadoterate meglumine (Gd-DOTA) on a TiO2-Ni(SO4)0.3(OH)1.4 composite anode was investigated in alkaline medium (5 M KOH) using cyclic voltammetry and chronoamperometry. The composite was prepared by hydrothermal method and the morphology and structure of the produced nanoparticles were studied by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, atomic force microscopy, BET surface area analysis and Fourier transform infrared spectroscopy. The characterization revealed the formation of Ni(SO4)0.3(OH)1.4 nanobelts dispersed on TiO2 nanoaggregates. The composite was coated onto a porous graphite rod, showing good adherence without requiring any binder (according to their anodic and cathodic charges). The supported composite was electrocatalytic, allowing the oxidation of meglumine, either as pure reagent or contained in gadoterate meglumine solutions. Electrochemical methods allowed determining the kinetic parameters, such as the electron transfer coefficient α, the total number of electrons n and the standard heterogeneous rate constant k0 for the reaction of meglumine. The chronoamperometric tests informed about the good stability of the composite anode upon meglumine oxidation at +0.6 V for 10 h. The electrochemical oxidation of meglumine in a commercial pharmaceutical formulation (Dotarem®) was corroborated via ultra-high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry

    Data fusion of ultrasound and GPR signals for analysis of historic walls

    Full text link
    [EN] This paper presents an application of ultrasounds and ground-penetrating radar (GPR) for analysis of historic walls. The objectives are to characterize the deformation of a historic wall under different levels of load weights and to obtain an enhanced image of the wall. A new method that fuses data from ultrasound and GPR traces is proposed which is based on order statistics digital filters. Application results are presented for non destructive testing (NDT) of two replicates of historic ashlars' masonry walls: the first one homogeneous and the second one containing controlled defects such as cracks and nooks. The walls are measured separately using ultrasounds and GPR at different load steps. Time and frequency parameters extracted from the signals and different B-Scans for each of the NDT techniques are obtained. After this, a new fused representation is obtained, which results demonstrate the improvement of characterization and defect detection in historic walls using data fusion.This work has been supported by Generalitat Valenciana under grant PROMETEO/2010/040, and Spanish Administration and European Union FEDER Prog. under grant TEC2011-23403 01/01/2012.Salazar Afanador, A.; Gosálbez Castillo, J.; Safont Armero, G.; Vergara Domínguez, L. (2012). Data fusion of ultrasound and GPR signals for analysis of historic walls. IOP Conference Series: Materials Science and Engineering. 42:1-4. https://doi.org/10.1088/1757-899X/42/1/012008S144
    corecore