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Abstract

The electrocatalytic oxidation of meglumine and gadoterate meglumine (Gd-DOTA) 

on a TiO2-Ni(SO4)0.3(OH)1.4 composite anode was investigated in alkaline medium

(5 M KOH) using cyclic voltammetry and chronoamperometry. The composite was

prepared by hydrothermal method and the morphology and structure of the 

produced nanoparticles were studied by scanning electron microscopy with 

energy-dispersive X-ray spectroscopy, X-ray diffraction, atomic force microscopy, 

BET surface area analysis and Fourier transform infrared spectroscopy. The 

characterization revealed the formation of Ni(SO4)0.3(OH)1.4 nanobelts dispersed on 

TiO2 nanoaggregates. The composite was coated onto a porous graphite rod, 

showing good adherence without requiring any binder (according to their anodic 

and cathodic charges). The supported composite was electrocatalytic, allowing the 

oxidation of meglumine, either as pure reagent or contained in gadoterate 

meglumine solutions. Electrochemical methods allowed determining the kinetic 

parameters, , the total number of 

electrons n and the standard heterogeneous rate constant k0 of the reaction of 

meglumine. The chronoamperometric tests informed about the good stability of the 

composite anode upon meglumine oxidation at +0.6 V for 10 h. The 

electrochemical oxidation of meglumine in a commercial pharmaceutical 

formulation (Dotarem®) was corroborated via ultra-high performance liquid 

chromatography coupled to electrospray ionization and quadrupole time-of-

mass spectrometry.
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List of symbols and acronyms

Scan rate (mV s-1)
Surface concentration (mol cm-2)
Flow rate (cm3 min-1)

AFM Atomic force microscopy
APIs Active pharmaceutical ingredients
BET Brunauer-Emmett-Teller surface area (m2 g-1)
CV Cyclic voltammetry 
Ean Anodic potential (V)
E0 Standard electrode potential (V)
EDS Energy-dispersive X-ray spectrometry 
Ep Peak potential (V)
Ep/2 Half-peak potential (V)
eV Electronvolt (V)
F Faraday constant (C mol-1)
FTIR Fourier-transform infrared spectroscopy
Gd Gadolinium 
Gd-DOTA Gadoterate meglumine
HE High energy
Hg/HgO Mercury-mercury oxide reference electrode
HRMS High resolution mass spectrometry
ICP-MS Inductively coupled plasma mass spectrometry
Ip Peak current (mA)
JCPDS Joint Committee on Power Diffraction Standards card
k0 Standard heterogeneous rate constant (s-1)
LE Low energy
m/z Mass-charge
MRI Magnetic resonance imaging
MS Mass spectrometry 
MS Multistep mass spectrometry
[M+H]+ Protonated molecule
n Number of electrons
Pt Platinum 
Qc Cathodic charge (in Coulombs)
R Gas constant (in J mol-1 K-1)
SEM Scanning electron microscopy
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Mercury
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1. Introduction

Meglumine is a sugar alcohol derived from glucose that contains an amino 

group modification. It can be applied either as a counterion to form a salt with 

active pharmaceutical ingredients (APIs) or as a functional excipient in the 

pharmaceutical industry and in clinical analysis, since it has low toxicity alongside 

high biocompatibility and biodegradability [1,2]. Moreover, it can act as catalyst in 

multicomponent reactions [3,4]. As a counterion, it is typically employed to 

formulate pharmaceutical contrast agents. Among the contrast agents for magnetic 

resonance imaging (MRI) examinations, the gadolinium-based MRI contrast agents 

(GBCAs) are by far the most widely used. A good example is gadoterate 

meglumine (Gd-DOTA, whose chemical structure is depicted in Fig. 1 [5].

In the commercial pharmaceutical formulation of Gd-DOTA (branded drug 

DOTAREM®), meglumine is the counterion of (Gd)-1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and favors its solubility. It 

is often administered to patients for MRI to enhance tissue contrasts.

The use of GBCAs in the last two decades has increased considerably 

worldwide. Therefore, they are currently considered as emerging contaminants. 

Once used in clinical studies, GBCAs are excreted mostly unmetabolized, thereby 

TOF-MS Quadrupole time of flight mass spectrometry
tR Retention time (min)
UHPLC-ESI-Q-
TOF-MS

Ultra high performance liquid chromatography coupled to 
electrospray ionization and quadrupole time-of-flight mass 
spectrometry 

UPLC Ultra performance liquid chromatography 
XICs Extracted ion chromatograms
XPS X-ray photoelectron spectroscopy
XRD X-ray powder diffraction 
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being discharged into water bodies. Their impact on health and the environment is 

significant, as they cause anthropogenic Gd abnormalities, which are defined as

elevated levels of Gd relative to other naturally abundant lanthanides [6-8]. In this 

context, several studies and reviews have reported the eco-toxicological impact of 

GBCAs [9,10], as well as their fate, bioaccumulation, metabolism [11,12],

speciation [13,14], stability [15], removal by adsorption [16-19] and degradation of 

Gd complexes [20].

The recovery and reuse of gadolinium is a growing trend due to its abundant 

use in clinical analysis and various industrial activities. To address this issue, 

several strategies have been developed for the removal of rare earth elements and 

metal ions from aqueous solutions and wastewater [21-23]. However, they are not 

completely effective for trace levels of contaminants and stable contaminants such 

like Gd complexes. One of these complexes is the gadoterate meglumine, in which 

meglumine is the counterion of the macrocycle. Previous studies carried out in our 

laboratories suggest that meglumine plays an important role in the removal of Gd-

DOTA by adsorption or photochemical and electrochemical treatment. In this 

context, the study of the electrochemical oxidation of meglumine is of interest for a 

better understanding of Gd recovery.

After clinical analysis, the gadolinium-based compounds are excreted 

unmetabolized through the urine. Where the two most abundant organic 

compounds are urea and creatinine [24]. Human urine contains about 0.33 M urea 

[25], which is a source of energy [26]. When urea is removed from a wastewater 

stream, it can be used as an energy source when coupled  H2-based fuel cell 

technologies [26, 27]. Likewise, urine can be efficiently oxidized in an alkaline 

context, the study of the electrochemical oxidation of meglumine is of interest for a 

better understanding of 
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DOTA by adsorption
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medium using nickel oxides or nanostructured materials as electrodes. For this 

reason, it seems plausible to study them using a nickel-based electrode in alkaline 

medium. Consequently, considerable efforts have been focused on the synthesis 

of nanostructures containing nickel oxide, aiming to improve the electrocatalytic 

property of nickel oxide nanoparticles in alkaline medium [28-31]. So, these 

nanostructures have received great attention due to their positive catalytic effect in 

the oxidation of urea    [28,32-34]. On the other hand, basic hydroxy-rich nickel 

salts have been extensively studied due to their potential applications in areas 

such as catalysis, anion exchange, sensors and magnetism, among others [35-40].

A basic hydroxy-rich nickel salt is a nickel sulfate hydroxide like Ni(SO4)0.3(OH)1.4. 

The Ni(SO4)0.3(OH)1.4 catalyst can be synthetized as a nanomaterial by 

hydrothermal method, according to various reports [41-45]. In addition, in the 

present work, with the perspective of future studies on the photoelectrochemical

degradation of meglumine and gadoterate meglumine in the visible region, TiO2

was added to Ni(SO4)0.3(OH)1.4 catalyst. On the other hand, nickel and TiO2 are 

cheap and very stable catalysts in basic medium. As has been reported, nickel 

oxides and TiO2 exhibit high tolerance in alkaline medium, which has favored their 

use in diverse fields like water treatment and air purification. Authors have revealed 

their positive characteristics such as chemical stability, insolubility, corrosion 

resistance, non-toxicity and low cost. [46]. Nickel oxides-TiO2 composites can be 

obtained through different methods under different conditions [47-50]. The resulting

composite materials are used for energy storage applications, as well as in 

electrocatalytic and photoelectrocatalytic cells [51,52]. Therefore, they could be 

used to investigate the redox properties of GBCAs by various electrochemical 

use in diverse fields like water treatment and air purification. Authors have revealed 
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techniques. These studies could provide valuable information on the metabolic fate 

or give rise to new strategies to recover and reuse the gadolinium excreted after 

clinical analysis. Note that works related to the electrochemical oxidation of GBCAs 

and its characterization are rather scarce [49,50]. Telgmann et al. [53] reported the 

potential metabolic pathways of the most frequently used Gd chelates from

electrochemistry/capillary electrophoresis/ESI-mass spectrometry (MS) and

tandem ICP-MS.

Since gadoterate meglumine is a salt, where meglumine is the counterion, in 

this first work the electrochemical response and degradation of meglumine are 

studied. The latter with the aim of knowing if the electrochemical degradation of 

gadoterate meglumine on a composite electrode could be proposed as the first 

step to favor the elimination of ionic GBCAs by adsorption, photocatalysis or 

photoelectrocatalysis. Likewise, in this work, a new hybrid nanomaterial catalyst 

composed of TiO2 nanoparticles and Ni(SO4)0.3(OH)1.4 nanobelts was synthesized 

following a hydrothermal route.

The prepared composite was characterized and its electrocatalytic activity 

was evaluated by studying the oxidation of both meglumine and gadoterate 

meglumine in alkaline medium. The electrochemical reactivity of gadoterate 

meglumine was studied with the future perspective of removing Gd from the Gd-

DOTA complex, once excreted in urine, through an electrochemical, 

photoelectrochemical and adsoption methods. Gadoterate meglumine is a quite 

stable compound, as verified when treated by different methods. For example, the 

efficiency of adsorption is reduced due to presence of the meglumine counterion of 

Gd-DOTA. Therefore, the interest of this work is to evaluate the possible removal 
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of the meglumine counterion by electrochemical oxidation, which would serve to 

favor the recovery of Gd-DOTA by adsorption and hence, the recovery of Gd.

2. Experimental

2.1. Materials

TiO2 powder (P25, 99.5%, Degussa, Germany) and meglumine (C7H17NO5, 

Merck) were used without further treatment. NiSO4 7H2 99%) and

NH4OH (28% NH3 in water, 99.9%) were purchased from Merck. Gadoteric acid 

was obtained from Dotarem® (0.5 mmol mL-1) provided by Guerbet. All the

solutions were prepared with deionized water.

2.2. Synthesis of basic nickel sulfate nanobelts and the composite

The synthesis of TiO2-Ni(SO4)0.3(OH)1.4 nanobelts was carried as follows: 

0.16 M of NiSO4 7H2O and 0.2 M of NH4OH were dissolved in 15 cm3 of deionized 

water under constant stirring at 500 rpm, after which 500 mg of TiO2 P25 powder 

were added maintaining the stirring. The as-formed green solution was sealed in a 

-lined autoclave of 30 cm3 capacity and maintained at 190 °C for 26 h under

stirring. After cooling down to room temperature, the products were collected by 

naturally sedimentation, washed with distilled water ten times and absolute ethanol 

was dried at 70 °C overnight. The 

prepared TiO2-Ni(SO4)0.3(OH)1.4 composite contained SO4
2 anions intercalated in 

the nickel hydroxide nanobelts.

2.3. Electrode fabrication

After cooling 
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For the anode fabrication, 10 mg of the TiO2-Ni(SO4)0.3(OH)1.4 composite 

were placed in a tube with 5 cm3 of ethanol and treated with ultrasounds for 6 min, 

to disperse the composite material. Then, the nanocomposite was coated onto a 

porous graphite bar by successive immersion in ethanol solution containing 

dispersed nanoparticles of the nanocomposite. First, the graphite rod was 

immersed in a disperse TiO2-Ni(SO4)0.3(OH)1.4 solution for 6 min and further dried 

with compressed air. This process was considered as an immersion coating cycle.

This procedure was repeated for 20 immersion cycles, without using any binder 

since the adhesion was very satisfactory, according to their anodic and cathodic 

charges for the pair Ni(II)/Ni(III) measured before and after each experiment.

2.4. Physical characterization

The crystal structure of the synthesized nickel hydroxyde and nickel-titanium 

nanomaterials was determined by X-ray powder diffraction (Bruker D8 Discover 

diffractometer radiation of 1.5401 Å). The morphology and chemical 

composition of the as-prepared materials were investigated by field emission 

scanning electron microscope JSM-7800F equipped with an energy-dispersive X-

ray spectrometer (EDS). The surface topography of the nickel hydroxide nanobelts

was determined by atomic force microscopy (AFM, JEOL JSPM-5200). The 

textural analysis of the nanocomposite was performed by nitrogen adsorption 

measured at -196 °C using an Autosorb-1 from Quantachrome. A Nicolet 6700 IR 

spectrophotometer was used to record in triplicate FTIR transmission spectra with

KBr pellets.

2.5. Electrochemical setup

spectrometer
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Electrochemical measurements and bulk electrolysis of meglumine solutions 

were performed in a 20 cm3 three-electrode undivided cell. The working electrode 

was a TiO2-Ni(SO4)0.3(OH)1.4 composite, supported onto porous graphite rod with a 

geometric area of 4.78 cm2, and the counter electrode was a Pt mesh. An Hg/HgO 

(5 M KOH) electrode was employed as the reference electrode, and all the 

potentials given in this manuscript are referred to it. The electrochemical 

measurements were made with an Eco Chemie Autolab PGSTAT 302 potentiostat-

galvanostat controlled with a GPES 4.9 software. The electrochemical response 

and stability of the TiO2-Ni(SO4)0.3(OH)1.4

times from -0.50 to +0.65 V vs. Hg/HgO at a scan rate of 0.003 V s-1 in an alkaline 

medium of 5 M KOH. This high concentration was chosen because the 

electrocatalytic activity of nickel oxides for the reaction of urea in urine is usually 

optimal in this medium. It also ensures good stability, durability and corrosion 

resistance. lic 

voltammograms before and after each experiment.

2.6. UHPLC-ESI-Q-TOF-MS analysis

The electrolyzed solutions were adjusted to pH 5.0 and were diluted (1:100) 

for the analysis of the products by ultra-high-performance liquid chromatography 

coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry

(UHPLC-ESI-Q-TOF-MS). Data were acquired by two acquisition functions at 

different collision energies (MSE acquisition mode). The use of the low energy (LE) 

function with a collision energy of 4 eV provided information about non-fragmented 

ions related to the parent protonated molecule [M+H]+ in positive ionization mode. 

The electrolyz

for the analysis of the products by 

The electrolyz

ESI Q-TOFTOF

voltammograms before and after each experiment.voltammograms before and after each experiment.

electrocatalytic activity of nickel oxides for the reaction of urea in urine is usually 
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The high energy (HE) function, with a collision energy ramp ranging from 15 to 40 

eV, allowed the acquisition of accurate-mass fragment ions. A Waters Acquity 

ultra-performance liquid chromatograph (UPLC) system (Waters, Milford) was 

employed. The separation was performed using an Atlantis T3 (3.0 mm 150 mm, 

3.0 µm particle size) column from Waters. The mobile phases contained water (A) 

and methanol (B), both with 0.01% formic acid. The percentage of B changed as 

follows: 0% at 0 min, 0% at 2 min, 10% at 10 min, 0% at 10.1 min and maintained 

until 12 min. The flow rate was 800 µL min-1 and the analysis run time was 12 min. 

The sample injection volume was 20 µL. 

The UPLC system was interfaced to a hybrid quadrupole-TOF high resolution 

mass spectrometer (HRMS) (Xevo G2 Q-TOF, Waters Micromass), using an 

orthogonal Z-spray-ESI interface operating in positive mode. TOF-MS resolution 

was approximately 18,000 at full width-half maximum at m/z 556. Nitrogen was 

used as drying and nebulizing gas at a flow rate of 1000 dm3 h-1. The MS data 

were acquired over an m/z range of 50-1000 at a scan time of 0.4 s. A capillary 

voltage of 0.7 kV and cone voltage of 20 V were used in positive ionization mode. 

The collision gas was argon (99.995%, Praxair). The desolvation, source and 

column temperatures were 120 and 40 ºC, respectively.

3. Results and discussion

3.1. Structure and morphology of the synthetized materials

The crystal structure of the synthesized product was determined from 

comparison of the XRD patterns, shown in Fig. 2. The diffractogram of TiO2

The collision gas was argon (99.995%, Praxair). The desolvation
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powder, evidencing the anatase and rutile peaks, can be seen in Fig. 2a. The

peaks in Fig. 2b can be clearly indexed to a pure monoclinic Ni(SO4)0.3(OH)1.4

(paraotwayite) phase with lattice constants of a = 7.89 Å, b = 2.96 Å, and c = 16.63 

Å, according to the standard card JCPDF 41-1424.

Note that no diffraction peaks other than those of nickel sulfate hydroxide can 

be observed in the XRD pattern of Fig. 2b. Nickel hydroxide nanostructures of 

various morphologies [54] as well as monoclinic nickel sulfate hydroxide 

Ni(SO4)0.3(OH)1.4 nanobelts have been obtained under different conditions 

[41,42,55]. The formation process of the monoclinic nanobelts was proposed by

different authors [41-45]. However, the literature on TiO2-nickel hydroxysulfate

composites is scarce [49,50,56]. Fig. 2c illustrates the XRD diffraction pattern of 

the composite, which maintains the monoclinic phase of the parent nickel sulfate 

hydroxide.

The morphologies and the surface composition of the nickel sulfate

hydroxyde and the as-synthesized TiO2-Ni(SO4)0.3(OH)1.4 samples were studied by 

SEM and EDS (Fig. 3 and 4). Fig. 3a and the inset in Fig. 4a reveal that the 

morphology of nickel sulfate hydroxide consists of nanobelts, whereas that of the 

TiO2-Ni(SO4)0.3(OH)1.4 sample presents nanobelts [44] with different lengths 

dispersed on the TiO2 aggregates (Fig. 3b and inset of Fig. 4b). In the SEM image

shown in Fig. 3b, TiO2 nanoaggregates, thin nanosheets and nanobelts of different 

sizes and lengths distributed on the walls and macrocavities of the graphite surface

can be identified.

morphology 

Ni(SO4)0.3

of nickel sulfate hydroxide 

(Fig.

hydroxyde and the as

3 and 4

hydroxyde and the as-synthesized 

The morphologies and the The morphologies and the 

, which maintains the monoclinic phase of the monoclinic phase of 

Fig. 2c illustrates the 

the monoclinic phase of 

Fig. 2c illustrates the 

he literature on 

Fig. 2c illustrates the 

The formation process of the monoclinic 

he literature on 

The formation process of the monoclinic nanobelts was 

nanobelts have been obtained under different conditions 

monoclinic nickel sulfate 

nanobelts have been obtained under different conditions 



14

Fig. 4a shows an EDS spectrum of the paraotwayite-type Ni(SO4)0.3(OH)1.4

nanobelts, clearly revealing that the prepared material contains O, Ni and S (note 

that H is not detectable by EDS). The spectrum confirms the abundance of S, Ni, 

and O elements (atomic ratio = 1:25:13). In the case of the EDS spectrum of the 

composite (Fig. 4b), in addition to the elements mentioned above, the presence of 

Ti in the surface composition stands out. Therefore, the SEM images indicate that 

the surface is macroporous with a heterogeneos surface distribution of TiO2-

Ni(SO4)0.3(OH)1.4 nanoribbons on TiO2 nanoaggregates, whereas the sulfate 

groups are intercalated in the nickel hydroxide, as proven below by FTIR 

spectroscopy.

The chemical structure of the TiO2-Ni(SO4)0.3(OH)1.4 composite sample was 

also identified by FTIR absorption spectroscopy. Fig. S1 shows the FTIR spectrum 

of both, TiO2 P25 and the composite, within the wavenumber range between 400

and 4000 cm 1. Different sets of bands can be observed, which correspond to 

different functional groups. TiO2 and the composites exhibited strong characteristic 

peaks of TiO2. Fig. S1a shows the FTIR spectrum of TiO2 with a main peak spread 

from 500 to 700 cm-1, which belongs to Ti-O-Ti bond of the TiO2 [49], whereas the 

peak around 1624 cm-1 in (a) and (b) in Fig. S1 can be assigned to the bending 

mode of the physisorbed water on TiO2 and interlayered water molecules located 

in the paraotwayite-type layer [56-59]. In Fig. S1b, the vibrational broad bands in 

the range of 3000 to 3700 cm 1 for the composite can be assigned to the O-H 

stretching vibration of the hydrogen-bound hydroxyl groups and interlayered water 

molecules located in the paraotwayite-type layer [56-59]. The 1071 and 610 cm-1

from 500 to 700 cm
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bands can be assigned to sulfate groups that are absorbed or coordinated by the 

surface atoms of Ni(OH)2 layer structure [41,45,57,58]. Gao et al., [45] recently 

reported via XPS studies that the sulfur element can be incorporated in Ni(OH)2 in 

the form of sulfate (Ni(SO4)0.3(OH)1.4). The band at 498 cm 1 can be assigned to 

the Ni-O vibrations.

3.2. BET surface area and pore size distribution

The surface area, pore volume and porosity of TiO2 P25, Ni(OH)2 and TiO2-

Ni(SO4)0.3(OH)1.4 composite samples were investigated by nitrogen adsorption-

desorption analysis. Fig. 5a shows the nitrogen adsorption/desorption isotherms of 

TiO2 and composite samples, respectively. Isotherms of type IV from Brunauer-

Deming-Deming-Teller (BDDT) classification were assigned, suggesting the 

presence of mesopores (2-50 nm) [60-62]. In composite samples, a high hysteresis 

loop was observed at a high-pressure range of 0.8-1.0, which can be attributed to 

interglobular contacts that are generated by the two different components of the 

material. The isotherms present high absorption within the high relative pressure 

(P/P0) range (approaching 1.0), implying the formation of large mesopores. The 

pore size distribution was calculated from the desorption branch of the nitrogen 

isotherms by the Barret-Joyner-Halender (BJH) method (not shown). It depicted a 

peak pore diameter of about 27.5 nm for composite samples, thus confirming the 

presence of mesopores. The BET surface area of TiO2 and composite samples 

was 60 m2 g-1 and the total pore volume was 0.7405 cm3 g-1 for the TiO2 P25 and 

0.4846 cm3 g-1 for the composite sample. The lower total volume of the composite 

indicates the presence of another component (in this case, nickel hydroxide 

ze distribution 
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sulfate) with lower nitrogen adsorption as compared to titania. Titania nanoparticles 

were not porous and hence, the same could be expected for the composite. 

However, the composite showed two substantial differences: smaller adsorbed 

volume and a hysteresis loop. This is not due to the occurrence of porosity, but to 

the new cavities formed in the composite due to the nickel phase. Nitrogen 

adsorption is a convincing method to elucidate such effects.

Aditionally, atomic force microscopy was employed to characterize the 

topography and the porosity of nickel sulfate hydroxide nanobelts. Fig. 5b and 5c

show that the pores can be associated with such nanobelts.

3.3. Electrochemical response of the TiO2-Ni(SO4)0.3(OH)1.4 nanocomposite

3.3.1. Cyclic voltammetry

The electrochemical oxidation of meglumine was studied in an aqueous basic 

medium by cyclic voltammetry (CV) using a TiO2-Ni(SO4)0.3(OH)1.4 nanocomposite 

supported on a graphite rod electrode. This electrode was previously activated and 

stabilized by consecutive cyclic voltammetry in 5 M KOH, as described in the

section 2.5. Fig. S2a and S2b confirm that the charge associated to the 

Ni(II)/Ni(III) redox pair after ten activation cycles remained constant. Fig. 6A shows 

the cyclic voltammetric responses using the TiO2-Ni(SO4)0.3(OH)1.4 nanocomposite 

electrode in 5 M KOH (curve b) and in the presence of 7.4 mM meglumine (curve 

a) at scan rate of 0.020 V s 1. In the absence of meglumine, the CV data of Fig. 

6A(b)) highlights the presence of two peaks; the anodic peak appears at 0.485 V 

and the cathodic one occurs at 0.36 V, which can be assigned to the redox 

conversion of the Ni(III)/Ni(II) pair described by reaction (1):

redox pair 
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In the presence of meglumine, the anodic peak becomes a wave, and its

oxidation occurs in the region of the Ni(II)-to-Ni(III) transition, as can be seen in 

Fig. 6A(a). The contribution of the graphite support to the oxidation of meglumine, 

shown in the inset (c) of Fig. 6A under the same working conditions, is quite

insignificant. After subtracting the background current, the oxidation peak of 

meglumine is well defined at 0.529 V (see the inset (d) of Fig. 6A). Fig. 6A makes 

also in evidence that the cathodic peak and the corresponding charge involved in 

the Ni(III)-to-Ni(II) transition decreases considerably when meglumine is present in 

the solution, which may suggest the electrocatalytic nature of the oxidation of 

meglumine. As will be demonstrated later, the degree of disappearance of the 

cathodic peak depends on the scan rate and the meglumine concentration. It is 

also very remarkable that during the reverse scan, a broad anodic peak appears at 

0.467 V with a high anodic current when meglumine is present in the solution (see 

arrows in curve a of Fig. 6A). The anodic potential during the backward scan 

(0.467 V) is less positive than that observed during the forward scan (0.529 V). The 

fact that a high meglumine oxidation current appears at lower anodic potential in 

the reverse scan suggests the occurrence of desorption of meglumine or 

intermediates generated during the forward anodic scan.

Fig. 6B shows the cyclic voltammograms obtained with the TiO2-

Ni(SO4)0.3(OH)1.4 composite electrode at different concentrations of meglumine at a 

scan rate of 0.020 V s-1. As can be seen, the current increases when the 

meglumine concentration in the solution is risen from 1 mM (curve a in inset) to 10 
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mM. For the latter concentration, the anodic peak current increased by 

approximately 3 times. The insets in Fig. 6B highlight the meglumine oxidation 

response al low concentration (curve a). After removing the background current,

the meglumine oxidation peak is about 0.530 V. The electrochemical response by 

cyclic voltammetry is more noticeable when the forward anodic and backward 

cathodic scan are represented separately, as shown in Figs. 7A and 7B. As can be 

observed in Fig. 7A, the onset potential for the Ni(II)/Ni(III) transition during the 

forward anodic scan is around 0.45 V, and a single oxidation wave is observed at 

0.53 V, suggesting that meglumine is indirectly oxidized by Ni(III). Also, Fig. 7B 

reveals the appearance of an anodic wave in the backward cathodic scan with a 

less positive potential and with a higher anodic current. The latter indicates that the 

oxidation continues probably due to the regeneration of Ni(II)/Ni(III) active species 

because of the removal of intermediates or products resulting from the oxidation of 

meglumine during the forward scan. This anodic wave in the reverse scan 

increased upon rise in the concentration of meglumine in the solution. Note that the 

dependence between the peak current during the backward scan and the 

meglumine concentration was also linear (inset (b) in Fig. 7B). Linear correlations 

in Fig. 7A(a) and 7B(b) yield different values for both slopes and intercept. The 

latter suggests that the intermediates or products resulting from the oxidation of 

meglumine during the forward anodic scan are also oxidized during the backward

cathodic scan. On the other hand, the charge Qc of NiOOH to Ni(OH)2 decreases 

with the increase of meglumine in the solution (inset b in Fig. 7B), suggesting that 

part of the active sites of NiOOH are consumed by meglumine through the indirect 

meglumine concentration 

a)
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oxidation process. At the same time, the decrease in Qc is typical of that expected 

for mediated oxidation described by reactions (1) and (2).

3.3.2. Effect of the scan rate on meglumine oxidation

The effect of scan rate ( ) on meglumine oxidation was evaluated with a 10 

mM meglumine and 5 M KOH solution in a range of potential scan rates from 0.003

to 0.2 V s 1 (see Fig. 8A). The cyclic voltammograms obtained using the TiO2-

Ni(SO4)0.3(OH)1.4 composite electrode at those rates indicated that the anodic peak 

current was linearly proportional to the scan rate between 0.003 and 0.2 V s-1 (see 

Fig. 8B), which agrees with a surface-controlled electrode process. From Fig. 8A, 

one can also establish that the cathodic peak did not shift in potential as the scan 

rate was increased in the presence of meglumine. However, the cathodic current 

values observed at low scan speeds increased with rising scan rate, because in 

short time-scale experiments, there is not enough time for the catalytic reaction to 

finish. Based on this finding, one can consider that the rate-limiting step is the 

reaction between Ni oxyhydroxyde and meglumine absorbed on the surface.

The surface concentration ( ) of meglumine on the surface of TiO2-

Ni(SO4)0.3(OH)1.4 electrode was estimated from the slope of the Ip curve,

according to the Eq. (3) [63]:

where n is the number of electrons transferred (2), F is the Faraday constant 

(96,485 C mol-1), R is the gas constant (8.314 J mol-1 K-1), A is the surface area of 
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the electrode (4.78 cm2) and T is the temperature (298 K). From the slope of the 

anodic peak current vs. scan rate plot, the calculated surface concentration of 

meglumine was 3.89 x 10 9 mol cm 2. 

The Ep of the oxidation peak was also dependent on scan rate. The peak 

potential shifted to more positive values on increasing the scan rate, which 

confirms the irreversibility of the oxidation process an a linear relationship between 

peak potential and logarithm of scan rate for CV (Fig. 9A). According to Laviron 

[64], Ep is defined by the following equation,

where E0 is the standard electrode potential, is the transfer coefficient, ko is the 

standard heterogeneous rate constant of the reaction, n is the total number of 

electrons transferred, v the scan rate, having the other symbols their usual 

meaning. Thus, the -value (i.e., the transfer coefficient for the total step) can be 

calculated from the slope of Ep vs. log v (slope of 0.0323 V dec-1, Fig. 9A) one can 

obtain = 1.83, from equation (5):

where was calculated from the Bard and Faulkner´s [63] equation:

where Ep/2 is the potential at which the current is at half the peak value and hence

= 0.91. Further, the calculated number of electrons (n) transferred in the 

electrooxidation of meglumine was 2.011 2. Moreover, from the linear 

relationship between Ep and depicted in Fig. 9A, E0 = 0.5286 V was obtained by 

was calculated from the Bard and Faulkner´s [

= 1.83, from equation (5):
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extrapolating the ordinate to = 0. Using this E0 value, k0 = 2.18 x 103 s-1 was 

calculated by Eq. (7):

The dependence of the peak potential and the scan rate-normalized current 

(Ip
-1/2) on the log rate and scan rate, shown in Fig. 9B, demonstrates the 

characteristic profile of typical electrocatalyst regeneration mechanism [65].

3.3.3. Electrochemical response of gadoterate meglumine

Gadoterate meglumine is a very stable macrocycle (see Fig. 1) and its 

oxidation, leading to the release of gadolinium, is a challenge. Therefore, the study 

of its electrochemical behavior is interesting because meglumine acts as a counter 

ion to form the gadoterate meglumine salt. Fig. 10(A) shows the voltammetric 

curves with the TiO2-Ni(SO4)0.3(OH)1.4 electrode in a 5 MM KOH aqueous solution 

in the presence of 8.8 mM gadoterate meglumine at different scan rates. A single 

oxidation wave can be observed during the anodic scan, with its peak at around 

0.520 V, corresponding to the oxidation of gadoterate meglumine. The current 

signal in the forward scan is independent of v due to adsorption of gadoterate 

meglumine on the electrode surface, causing the partial displacement of OH- ions 

necessary for the formation NiOOH. In the reverse scan of Fig. 10(A), an anode 

wave appeared again around 0.497 V with a higher anodic current. This 

voltammetric behavior is like to that observed with single meglumine, which 

suggests that the meglumine present in the complex is oxidized during the 

potential sweep in the anodic direction. This was confirmed by comparing the 

in the forward 
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voltammetric responses of gadoterate meglumine and meglumine. Fig. 10(B)

depicts the voltammogram 9.1 mM meglumine (curve b) in 5 M KOH. When 0.1 

cm3 of gadoterate meglumine (8.8 mM) was added to the medium, a considerable 

increase in current can be observed (curve c), and the oxidation potentials during 

the sweep in the anodic and reverse directions were practically the same. 

Therefore, it can be considered that only the counterion (meglumine) of the 

complex is oxidized under our working conditions.

3.3.4. Controlled-potential electrolysis of meglumine

The electrolysis of meglumine was carried out with a TiO2-Ni(SO4)0.3(OH)1.4

composite electrode in an aqueous solution of 5 M KOH containing 9.1 mM of 

meglumine at anodic potentials (Ean) of +0.460 and +0.6 V under stirring. Fig. 11

shows the change of the oxidation current with time under potentiostatic conditions 

at Ean = +0.6 V. During the first 20 s of electrolysis, the current slowly decreased

around 22%; this can be observed from the chronoamperometric curve in inset (a) 

of Fig. 11. However, after that short time, current increased again until reaching a 

maximum after 70 min of electrolysis. This behavior may be due to the progressive 

enrichment of Ni(III) species by oxidation of Ni(II) on the electrode surface at Ean = 

+0.6 V. However, it cannot be ruled out that the catalytic oxidation of meglumine 

occurs simultaneously during this time. After 70 min of electrolysis, the oxidation 

current slowly decreases with electrolysis time, almost reaching the initial current, 

indicating that the composite electrode is very stable and is not deactivated upon 

prolonged electrolysis. It is pertinent to note that, during the electrolysis of 

meglumine and gadoterate meglumine, depending on the potential used, the 

enrichment of Ni(III) species by oxidation of Ni(II) on

However, it 
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formation of NiOOH, the oxidation of the compounds/intermediates and the oxygen 

evolution reaction occur simultaneously. So, the anodic current could be constant 

depending on the stability of the electrode.

After the electrolysis, the resulting solution was analyzed by UHPLC-ESI-Q-

TOF-MS in positive ionization mode to discern if meglumine was completely 

oxidized. Fig. 12A presents the extracted ion chromatograms (XICs) for (a) blank 

and for electrolytic trials with 9.1 mM meglumine in solution, (b) before and (c) after 

10 h of electrolysis at Ean = +0.6 V. According to the chromatogram (Fig. 12A(b)),

showing a peak at tR = 1.04 min, and the corresponding mass spectra (Fig. 12B) 

obtained at low energy (LE, plot (b)) and high energy (HE, plot (c)), the identified 

compound is meglumine. The qualifying ions for the identification of meglumine

were related to m/z 196, corresponding to the protonated molecule [M+H]+ at LE

and with fragment ions m/z of 178, 160 and 129 at HE [3,61,62].

From the determined peak area at tR = 1.04 min before and after electrolysis, one 

can conclude that meglumine was degraded by 93%. When the electrolysis of 9.1

mM meglumine was carried out at Ean = +0.46 V for 10 h, the oxidation of 

meglumine was smaller, achieving a 54%.

The electrooxidation of 8.8 mM gadoterate meglumine solution was also 

performed under the same conditions. Figure S3(a) shows the base peak intensity 

chromatogram for this solution before electrolysis. The two peaks at tR = 1.03 and

5.7 min in Fig. S3(a) correspond to meglumine and 158Gd-DOTA components, 

according to the accurate masses [M+H]. Analysis of the electrolyzed solution by 

UHPLC-ESI-Q-TOF-MS revealed that the area under the peak at tR = 1.04 min and 
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with m/z = 196.1181 (meglumine protonated molecule) decreased by 74% (see 

Fig. S4A). In contrast, the peak area at tR = 5.71 and m/z = 560.1014 (158Gd-DOTA) 

practically did not change (see Fig. S5A).

4. Conclusions

XRD, SEM and EDS analyses showed that a hybrid nanoelectrocatalyst 

composed of TiO2 nanoparticles and Ni(SO4)0.3(OH)1.4 nanobelts can be  

synthesized by a hydrothermal method. The prepared TiO2-Ni(SO4)0.3(OH)1.4

nanocomposite supported on graphite revealed a good electrocatalytic activity for

the oxidation of meglumine in an alkaline medium. Cyclic voltammetric analysis 

with the composite anode in 5 M KOH indicated that the e l e c t ro c h e m ic a l

oxidation of meglumine occurred through an electrocatalytic-regeneration 

mechanism. The UHPLC-ESI-Q-TOF-MS analysis of electrolyzed solutions of 

meglumine and gadoterate meglumine in alkaline medium suggests that 

meglumine either alone or in the gadoterate is easier to oxidize on a Graphite/TiO2-

Ni(SO4)0.3(OH)1.4 composite electrode than gadoteric acid.
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Fig. 3. SEM images of the (a) Ni(SO4)0.3(OH)1.4 nanobelts and (b) TiO2-

Ni(SO4)0.3(OH)1.4 composite.
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Fig. 4. EDS pattern of (a) the as-synthesized paraotwayite-type Ni(SO4)0.3(OH)1.4

nanobelts and (b) the TiO2-Ni(SO4)0.3(OH)1.4 composite.
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Fig. 11. Chronoamperogram obtained using the TiO2-Ni(SO4)0.3(OH)1.4 composite 

electrode in the presence of 9.1 mM meglumine in 5 M KOH at an anodic potential 

value (Ean) of +0.6 V. Inset (a), chronoamperometric curve of meglumine oxidation.mperometric curve of meglumine mperometric curve of meglumine 
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Fig. 12. (A) LE extracted ion chromatograms (XIC) for solutions: (a) 5 M KOH, (b) 

9.1 mM meglumine in 5 M KOH before electrolysis and (c) after electrolysis at Ean

= +0.6 V and t = 10 h. (B) In plot (b), mass spectra in LE of 9.1 mM meglumine; in 

plot (c) mass spectra at high energy (HE) before electrolysis. The pH of the 

solutions was adjusted to 5.0.
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