2,686 research outputs found

    Carbonation of concrete with construction and demolition waste based recycled aggregates and cement with recycled content

    Get PDF
    Durability is a major concern in concrete (particularly recycled concrete) structures exposed to carbonation-induced corrosion, given the social, economic, environmental and safety implications involved. This article explores carbonation performance in concrete with 25% or 50% mixed recycled construction and demolition waste aggregate, alone or in conjunction with cement containing 25% fired clay construction and demolition waste. Irrespective of cement type, the mean carbonation depth was slightly greater in materials with 25% or 50% recycled aggregate than in concretes with 100% natural aggregate, although the difference was not statistically significant for the 25% replacement ratio. In all the concretes studied, the carbonation coefficient was below the 4 mm/yr0.5 indicative of good quality. Based on the prediction model proposed in Spain’s concrete code, reinforcement passivity was guaranteed in all these types of concrete when exposed to class XC1 to XC4 carbonation environments for substantially longer than their 100 year design service life.This study was funded under research projects BIA 2013-48876-C3-1-R, BIA2013-48876-C3-2-R and BIA2016-76643-C3-1-R awarded by the Ministry of Science and Innovation and grant GR 18122 awarded to the MATERIA Research Group by the Regional Government of Extremadura and the European Regional Development Fund, ERDF. In 2016 University of Extremadura teaching and research personnel benefitted from a mobility grant (MOV15A029) awarded by the Regional Government of Extremadura and in 2018 from a José Castillejo (CAS17/00313) scholarship granted by the Spanish Ministry of Education, Culture and Sport. Philip Van den Heede is since October 2017 a postdoctoral fellow of the Research Foundation—Flanders (FWO) (project number 3E013917) and acknowledges its support.Peer reviewe

    Renormalization group contraction of tensor networks in three dimensions

    Full text link
    We present a new strategy for contracting tensor networks in arbitrary geometries. This method is designed to follow as strictly as possible the renormalization group philosophy, by first contracting tensors in an exact way and, then, performing a controlled truncation of the resulting tensor. We benchmark this approximation procedure in two dimensions against an exact contraction. We then apply the same idea to a three dimensional system. The underlying rational for emphasizing the exact coarse graining renormalization group step prior to truncation is related to monogamy of entanglement.Comment: 5 pages, 8 figure

    Local temperature in quantum thermal states

    Get PDF
    We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. Whereas in classical systems the temperature behaves as an intensive magnitude, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. The influence in this sense of zero-temperature quantum phase transitions can be clearly observed within this approach. Then we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result originates from typical properties of reduced sub-systems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperature is analyzed as a function of the size of the blocks and the system parameters.Comment: 10 pages, 10 figures. New fidelity measure with similar result

    Asymmetry in functional connectivity of the human habenula revealed by high-resolution cardiac-gated resting state imaging

    Get PDF
    The habenula is a hub for cognitive and emotional signals that are relayed to the aminergic centers in the midbrain and, thus, plays an important role in goal-oriented behaviors. Although it is well described in rodents and non-human primates, the habenula functional network remains relatively uncharacterized in humans, partly because of the methodological challenges associated with the functional magnetic resonance imaging of small structures in the brain. Using high-resolution cardiac-gated resting state imaging in healthy humans and precisely identifying each participants' habenula, we show that the habenula is functionally coupled with the insula, parahippocampus, thalamus, periaqueductal grey, pons, striatum and substantia nigra/ventral tegmental area complex. Furthermore, by separately examining and comparing the functional maps from the left and right habenula, we provide the first evidence of an asymmetry in the functional connectivity of the habenula in humans. Hum Brain Mapp 37:2602-2615, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc

    Family of fourth-order optimal classes for solving multiple-root nonlinear equations

    Get PDF
    [EN] We present a new iterative procedure for solving nonlinear equations with multiple roots with high efficiency. Starting from the arithmetic mean of Newton's and Chebysev's methods, we generate a two-step scheme using weight functions, resulting in a family of iterative methods that satisfies the Kung and Traub conjecture, yielding an optimal family for different choices of weight function. We have performed an in-depth analysis of the stability of the family members, in order to select those members with the highest stability for application in solving mathematical chemistry problems. We show the good characteristics of the selected methods by applying them on four relevant chemical problems.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was partially supported by Grant PGC2018-095896-B-C22, funded by MCIN/AEI/10.13039/5011000113033 by "ERDF A way of making Europe", European Union; and by the internal research project ADMIREN of Universidad Internacional de La Rioja (UNIR).Chicharro, FI.; Garrido-Saez, N.; Jerezano, JH.; PĂ©rez-Palau, D. (2023). Family of fourth-order optimal classes for solving multiple-root nonlinear equations. Journal of Mathematical Chemistry. 61(4):736-760. https://doi.org/10.1007/s10910-022-01429-573676061

    Generalizing Traub's method to a parametric iterative class for solving multidimensional nonlinear problems

    Full text link
    [EN] In this work, we modify the iterative structure of Traub's method to include a real parameter alphaα \alpha . A parametric family of iterative methods is obtained as a generalization of Traub, which is also a member of it. The cubic order of convergence is proved for any value of alphaα \alpha . Then, a dynamical analysis is performed after applying the family for solving a system cubic polynomials by means of multidimensional real dynamics. This analysis allows to select the best members of the family in terms of stability as a preliminary study to be generalized to any nonlinear function. Finally, some iterative schemes of the family are used to check numerically the previous developments when they are used to approximate the solutions of academic nonlinear problems and a chemical diffusion reaction problem.ERDF A way of making Europe, Grant/Award Number: PGC2018-095896-B-C22; MICoCo of Universidad Internacional de La Rioja (UNIR), Grant/Award Number: PGC2018-095896-B-C22Chicharro, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2023). Generalizing Traub's method to a parametric iterative class for solving multidimensional nonlinear problems. Mathematical Methods in the Applied Sciences. 1-14. https://doi.org/10.1002/mma.937111

    Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2

    Get PDF
    The expansion of the world’s population requires the development of high production agriculture. For this purpose, it is essential to identify target points conditioning crop responsiveness to predicted [CO2]. The aim of this study was to determine the relevance of ear sink strength in leaf protein and metabolomic profiles and its implications in photosynthetic activity and yield of durum wheat plants exposed to elevated [CO2]. For this purpose, a genotype with high harvest index (HI) (Triticum durum var. Sula) and another with low HI (Triticum durum var. Blanqueta) were exposed to elevated [CO2] (700 µmol mol–1 versus 400 µmol mol–1 CO2) in CO2 greenhouses. The obtained data highlighted that elevated [CO2] only increased plant growth in the genotype with the largest HI; Sula. Gas exchange analyses revealed that although exposure to 700 µmol mol–1 depleted Rubisco content, Sula was capable of increasing the light-saturated rate of CO2 assimilation (Asat) whereas, in Blanqueta, the carbohydrate imbalance induced the down-regulation of Asat. The specific depletion of Rubisco in both genotypes under elevated [CO2], together with the enhancement of other proteins in the Calvin cycle, revealed that there was a redistribution of N from Rubisco towards RuBP regeneration. Moreover, the down-regulation of N, NO3 –, amino acid, and organic acid content, together with the depletion of proteins involved in amino acid synthesis that was detected in Blanqueta grown at 700 µmol mol–1 CO2, revealed that inhibition of N assimilation was involved in the carbohydrate imbalance and consequently with the down-regulation of photosynthesis and growth in these plants
    • …
    corecore