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We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a
thermodynamical perspective. In a classical system the temperature behaves as an intensive magnitude, above
a certain block size, regardless of the actual value of the temperature itself. However, a deviation from this
behavior is expected in quantum systems. In particular, we see that under some conditions the description of
the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue
by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical
behavior. As it may be expected, we see that quantum features are more prominent at low temperatures and are
affected by the presence of zero-temperature quantum phase transitions. Interestingly, we show that the blocks
can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is
properly identified. Such a result may originate from typical properties of reduced subsystems of energy-
constrained Hilbert spaces. Finally, the relation between local and global temperatures is analyzed as a function

of the size of the blocks and the system parameters.

DOI: 10.1103/PhysRevA.79.052340

I. INTRODUCTION

Since the early days of quantum theory, there has been a
considerable effort to formulate the principles of thermody-
namics from a quantum perspective [1]. Recently, this ap-
proach has allowed discovery of novel features of the nature
of many-body systems; see, for instance, Refs. [2-6]. In par-
ticular, careful analysis of the application of thermodynamic
concepts to microscopic systems have shown the appearance
of purely quantum features. In such systems, thermodynamic
magnitudes may indeed lose their classical properties, giving
rise to peculiar dependencies on some system parameters,
such as size or total energy. A striking manifestation of this is
given by the temperature, a magnitude considered to be in-
tensive in classical thermodynamics. In a quantum scenario
the temperature may not be well defined, resulting in the fact
that subparts of thermal states may no longer be described as
thermal states with the same global temperature as the whole
system. More precisely, recent studies suggest that the inten-
sive nature of the temperature may be lost not only in depen-
dence on the size of the system subparts, as in a classical
scenario, but also in changing the temperature of the global
system [3,4]. Tt is then a relevant question to understand
under which conditions the concept of temperature offers a
correct description of subparts of quantum thermal states.

Although the main motivation of this work comes from a
fundamental point of view, studying the limits of validity of
thermodynamics concepts may be relevant from a practical
perspective. In fact, recent experimental progress in nano-
sciences allows access to thermodynamical quantities, such
as temperature, at scales in which deviations from classical
thermodynamics may become relevant [7]. For example, in
Refs. [8,9] it was pointed out that the breakdown of the con-
cept of temperature might have consequences on thermom-
etry and might be observed in experiments with spin chain
compounds.

In Refs. [3,4] a set of conditions was established in order
to assure that a large thermal system can be approximated by
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a set of factorized blocks, each of them described in turn by
a thermal state at the same temperature as the global system.
Clearly, when such an approximation is valid, local measure-
ments performed on a block provide results compatible with
the global temperature. In other words, we do meet a situa-
tion in which temperature is intensive. However, local mea-
surements on a single block do not provide any information
about the correlations with the other blocks, which are sim-
ply disregarded (traced out) in the measuring process. There-
fore, the approximation in Refs. [3,4] may be further relaxed,
still retrieving situations compatible with the concept of in-
tensive temperature. As a matter of fact, one may only re-
quire that the block actually measured should be in a thermal
state at the same temperature as the global one, not necessar-
ily factorized with the rest of the system. This is the ap-
proach adopted in this work.

The aim of the present work is to consider these issues
exploiting ideas and tools recently emerged from quantum
information science. This approach has the advantage of giv-
ing a thorough description of the quantum systems under
consideration, allowing in turn characterization in detail of
the departure from the classical behavior. We consider a
chain composed by n spins (where n can be taken in the
macroscopic limit) at temperature T and focus on the ther-
modynamical properties of a block composed by m spins
(m<n)—i.e., the reduced state obtained after tracing out n
—m spins. In a standard thermodynamic setting m and n are
taken large enough such that the interactions between the
block and the rest of the system may be disregarded. As a
consequence, the block can be well described by a thermal
state at the same temperature as the global one. However,
such a picture may break down for blocks of small size and
strong interactions. As said, whereas for classical systems
this breakdown has no dependence on the temperature, in
quantum systems a temperature dependence arises [3]. This
is the scenario that we will consider here. To face this prob-
lem we use the quantum fidelity as a figure of merit. The
latter quantifies the amount of statistical distinguishability
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between two quantum states and its properties have been
widely studied in quantum information science [10]. Re-
cently, the fidelity has been used both as an indicator of
phase transitions in spins systems [11,12], and to study the
emergence of thermal states in contiguous blocks of some
spin-system ground states [13]. As shown in these works, the
fidelity has been revealed to be a particularly sensitive figure
of merit in this framework. Here, we use it to check whether
the reduced states of the spin chain under consideration can
be well approximated by an m-particle thermal state. The
sensitivity of this approach will be assessed by investigating
regions in the phase space near the zero-temperature critical
points.

We also relate our investigations to recent findings in the
foundation of statistical mechanics—again inspired by quan-
tum information concepts. In Refs. [5,6] the authors ad-
dressed typical properties of the reduced states obtained by
tracing out a huge amount of degrees of freedom from a
constrained pure system. Building on previous results on
properties of quantum states in large dimensional systems
[14], it was shown in Ref. [5] that the reduced state of a big
system (including environment) satisfying an operator con-
straint is basically the same for almost any pure state of the
system. In the particular case in which (i) the operator con-
straint is related to the energy of the whole system and (ii)
the interaction between system and environment is small,
this typical state can be shown to correspond to a canonical
thermal state [5,6], as already pointed out in the early days of
quantum mechanics [15].

Motivated by these results we study the reduced states of
the chain from a thermodynamical perspective, describing it
with only a few physical magnitudes, an effective tempera-
ture in our case. In other words, we check whether the re-
duced states of thermal systems maintain some sort of ca-
nonical typicality. Recall that the results in Refs. [5,6] show
that a canonical thermal state for the reduced system is ob-
tained when the interaction energy between the considered
parts is negligible. As said, here we will consider settings in
which such condition is not fulfilled. Hence the validity of
these typicality results is by no means guaranteed. Specifi-
cally, we proceed by identifying the thermal state of m par-
ticles that, subject to the local interaction inherited by the
whole Hamiltonian, is closer to the actual reduced state of
the whole chain. We thus define an effective local tempera-
ture (the only free parameter to adjust) that can be compared
with the global temperature of the whole system. Depending
on the parameters of the Hamiltonian and the subsystem size,
we find situations where the local temperature is no longer
equal to that of the global system, in accordance with the
above-mentioned analysis. However, the description of the
reduced states as thermal states is an extremely good ap-
proximation, as shown by the corresponding fidelity. This is
remarkable since, as said, we are not in the standard condi-
tions considered in Refs. [5,6]. Our results then suggest that
some form of canonical typicality may still be present, even
if the interaction between system and environment is not
negligible. In particular, we find that below some threshold
temperature the local temperature may become higher than
the global one, and that the reduced states can have some
finite temperature even when the global system is in the
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FIG. 1. (Upper panel) Reduced m-particle state p,,(8) of a chain
composed by n particles in the thermal state €),(8) at temperature
T=1/p. The state () is built from an n-particle Hamiltonian H,,.
(Lower panel) Thermal state €),,(8) of m particles for the same

local interaction I:Im but referred to m particles.

ground state. Furthermore, as one may expect, the local and
global temperatures tend to coincide, increasing the size of
the subsystem.

The structure of the paper is the following. After introduc-
ing the systems under consideration, we calculate in Sec. II
the fidelity between two-particle blocks and the correspond-
ing thermal state. This allows to study the conditions under
which the temperature ceases to be an intensive magnitude.
Then, in Sec. III, we derive the local effective temperature of
the two-particle blocks, as well as the fidelity of this descrip-
tion. The dependence of the local temperature on the size of
the blocks is studied in Sec. IV, where blocks consisting of
more than two spins are studied with the help of the matrix
product states (MPS) formalism. Finally, we summarize our
results in Sec. V and point out some conclusive remarks.

II. INTENSIVE TEMPERATURE ANALYSIS

We start by assessing the applicability of the concept of
intensive temperature. As said, we consider a large spin sys-
tem at temperature 7=1/ 3 and focus on a sub-block of spins.
We then check whether the latter can be well approximated
by the thermal state at temperature 7 given by the interaction
inherited from the whole system Hamiltonian. By analyzing
the relation between the reduced states of thermal systems
and thermal states themselves, we assess the validity of such
estimation.

Consider the setting depicted in Fig. 1. On one hand,
we construct the canonical state of n particles €,(B)

=exp(-BH,)/Z,, where H,, is a local interacting Hamiltonian
and Z, is the partition function. In order to check the thermal
properties of the subparts of this state, we trace out a part of
it, obtaining the state of m particles, p,,(8)=Tr,_,[Q,(B8)].
(Throughout this paper we will focus on systems composed
by a number of particles n much larger than m.) On the other
hand, we directly construct the canonical state of m particles,

Q,,(B)=exp(-BH,,)/Z,,. We then compare these two density
matrices using the fidelity measure [16]

FIQ,.(B),Bu(B)] = THNQ,(B)B,(AVQ,(BT. (1)

Throughout this section both €),(8) and (},,(B) are set to the
same temperature, since we want to identify when the tem-
perature is intensive.

We apply the above considerations to a one-dimensional
(ID) spin chain characterized by the Ising Hamiltonian in a
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transverse field with open boundary conditions,

n—1 n
A 1 . . h .
H,=52 o,® o' =23 o, 2)
2i:l 2i:l )

where o; are the Pauli matrices, and / gives the strength of
an external magnetic field. The system experiences a
quantum—i.e., zero-temperature—phase transition when A
=h,=1 [17]. The two-spin correlation functions are given by
[18,19]

G, G, - G,
o G, G._ G_,
<0_;0_;+r> — :0 : 1 : +1 . (3)
Gr—2 Gr—3 e G—l
G Gy G 2
o G, G G_,
<0_1y0_;+r>= .2 :l . :+3 i (4)
G, G._ - G
(0l0t") =40’ - G,G.,, (5)
where
(™ tanh( 1
G,=- _J d¢ cos(¢r)(cos ¢ — h)M
m™Jo (1)¢
1 (™ tanh(% Bw
+ —f do sin(qbr)sin((b)M, (6)
m™Jo w¢)
wy= V(sin @)%+ (h = cos ¢)2. (7)

The parameter r sets the distance between the particles; e.g.,
r=1 means two neighbor particles. These correlators are cal-
culated for chains in the thermodynamic limit (i.e., n— ).
Using these formulas, one can compute the reduced density
matrix for the two-spin system p,(8),

1
paB) = 7|1+ 2 (oo} oy ® o |, (8)

without the explicit construction of the global thermal state
of n particles [19].

The minimal size for which both the terms in Hamiltonian
(2) contribute to the construction of ,,(B) is for m=2. We
then devote much attention to this first nontrivial case of
two-spin blocks. Furthermore, it is reasonable to expect that
if for such small blocks the temperature is intensive, it will
be intensive for larger blocks as well. This intuition will be
confirmed in Sec. IV, where the size dependence of our con-
siderations will be analyzed.

Before proceeding with the results, let us comment about

our choice of the local Hamiltonian I:Iz, from which the ref-
erence state (),(8) is derived. With this choice we are at first
sight disregarding the interaction between the two-spin block
and the rest of the system. Whereas this may be easily justi-
fied in the case of large m and n, it deserves to be clarified in
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our setting. In fact, we considered various strategies in order
to take into account the interactions at the border of the
block, in particular a mean-field approach, and the limit of
high temperatures.

First, one may add to Hz a correction term which takes
into account the surrounding spins of the block following a
mean-field approach. The idea is to replace the operators at
the boundaries by their mean value (o), so the correspond-
ing effective two-particle Hamiltonian reads

2 2
.1 he ;1 4
H==0,® o,— => o+ -> (o0 9)
2 2501 250

The boundary correction term however turns out be zero for
any finite temperature, as (o,)=0. This can be seen by con-
sidering that the canonical distribution €),(8) inherits the
symmetries of the Ising Hamiltonian, in particular the global
spin-flip symmetry U=® ,olz As a consequence, one has
[U,Q,(B)]=0, which implies that

[o..5:1(B)]=0 (10)

for any finite 8. Considering now that p,(8) can be expanded
in terms of the Pauli matrices, Eq. (10) imposes that (o)
=0 for any 7>>0 (see also Ref. [19]). However, recall that a
symmetry breaking can occur at T=0, resulting in (o) # 0.

Second, one could consider a correction valid for high
temperatures. A first-order expansion for S— 0 immediately
reveals that in this limit p,(8) is given by

]I®n R 1®2 .
52(B) 2Trn—2<?_ﬁHn> =?_IBH2 (11)

since the Pauli matrices appearing in the interacting terms of

I:In are traceless. The expression above for p,(8) coincides
with the high-T expansion of {),(8). In other words, for high
temperatures the standard situation is retrieved, and no cor-
rection has to be taken into account.

In order to further clarify our choice of the local Hamil-
tonian, let us consider the classical antiferromagnetic one-
dimensional Ising model, given by

n—1
H21=Esisi+l, (12)
i=1

where s'= + 1. Notice that the model above gives the classi-

cal limit of IEI,, for the case h=0 [20]. It is worthwhile to
briefly consider this example since it gives a relevant classi-
cal model whose local Hamiltonian contains no correction
due to the boundary terms. To show this, let us consider the
thermal state associated to Hamiltonian (12), described by a
thermal probability distribution:

1
P(s', ... .s") = Z—exp[— BH®, (13)
where Z, is the partition function. A straightforward calcula-
tion shows that, by summing over all the possible configura-
tion of the n—2 spins surrounding an arbitrary two-spin
block, one obtains the following distribution function:

052340-3



GARCIA-SAEZ, FERRARO, AND ACIN

0.95+
0.9+
0.85

0.8+

0.75+
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FIG. 2. Fidelity F[Q,(B),p,(B)] between the states Q,(B) (the
thermal state of two spins at temperature 7=1/8) and p,(B) (the
two-spin reduced state of a global thermal system at temperature 7)
as a function of 8 and the local magnetic field 4 of Ising Hamil-
tonian (2). The temperature ceases to be an intensive magnitude
when the fidelity is significantly different from 1.

PUss1) = —expl- B3, (19
2

where k is arbitrary (1<k<n), HS=s's**' is the local
Hamiltonian, and Z, its respective partition function. As said,
we see that for this kind of classical system no correction due
to the boundary terms is expected. Furthermore, notice that
Eq. (14) implies that the temperature is intensive. However
we should stress here that this result is not true for a generic
classical system. In conclusion, given the considerations
above, it seems reasonable to consider the Hamiltonian

Hz—without any additional correction—to build the refer-
ence state (),(B). We will adopt this choice throughout the
paper. Finally, let us notice that the same considerations ap-
ply for any size m of the block (see Sec. IV).

The results for the fidelity F[Q,(B),p,(B)] are plotted in
Fig. 2. We can see that it turns to be a nontrivial function of
the external magnetic field /# and the system global tempera-
ture 7. In particular we observe a high fidelity above a cer-
tain temperature, for any value of A. This confirms the intu-
ition that for high temperatures the classical behavior should
be recovered. Namely, the reduced states are well approxi-
mated by thermal states at temperature 7. On the other hand,
as we lower the temperature, the fidelity can drop to values
sensibly lower than 1, thus indicating that the standard ther-
modynamic description of the reduced state is no longer ac-
curate. We then recover the main feature of the results given
in [3]: the validity of the concept of intensive temperature
depends on the temperature itself, a behavior with no classi-
cal analog. Thanks to the sensitivity of the fidelity measure,
we can also analyze in detail such a behavior, as can be seen
for low temperatures. In this case, the fidelity turns to be
equal to 1 for 2>1 and h<<1, as can be expected recalling
that in both cases the ground state is factorized (all the spins
are aligned along the same direction) [17]. On the other
hand, for intermediate magnetic fields, the fidelity drops to
values sensibly lower than 1, showing a minimum which
depends on the temperature. We recall that the model in Eq.
(2) has a critical point when h,=1.

PHYSICAL REVIEW A 79, 052340 (2009)
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FIG. 3. First derivative of the fidelity F[Q,(8),p,(8)] with re-
spect to A and for fixed values of 8 (8=50,100,500). The behavior
turns singular at the critical point 4, for values of B closer to the
ground state.

Before proceeding further, we now explicitly assess the
sensitivity of the fidelity in this scenario. For this purpose we
numerically evaluated the first derivative of the fidelity with
respect to & at fixed 8. We see in Fig. 3 that as S increases,
the maximum of the derivative gets more pronounced. This
behavior reflects the fact that the changes in the ground state
become sharper and sharper as the system approaches criti-
cality. As a consequence, subparts of the system change
sharply as well and the approximation of them with a ther-
mal state becomes more sensitive to small changes in /. In
turn, the actual value of the maximum in Fig. 3 also in-
creases as the temperature decreases. This behavior proceeds
until we reach some (3, which corresponds to some effective
ground state, and below which additional changes are hardly
observed. This can be understood by looking at the tempera-
ture dependence in the correlators in Eq. (6). For large 8, one
can well approximate tanh(%ﬁwd,) ~ 1, so the reduced states
become almost independent of the temperature. The derived
magnitudes computed from the reduced states exhibit for this
reason minor changes below some temperature.

The above considerations can be extended as well to two
spins separated by r particles in the chain. In particular, we
considered a noncontiguous block of two distant spins which
we denoted by p, (). We reconstruct the density matrix of
such a block using again Eq. (8) and considering the explicit
dependence on r of the correlators [see Eq. (6)]. Clearly, it is
no longer interesting now to compare p, () with (,(8). A
much reasonable strategy is instead to construct a thermal
state ),,,(B) composed by r+1 spins and trace out all the
particles but the two extremal ones. We denoted the two-spin
state so obtained as (), (B). Then, we can compare €, ()
and p, () by calculating the fidelity F[Q, (B).p, (B)]. The
results for different values of r are shown in Fig. 4. Clearly
the fidelity is higher with respect to r=1. However, some
qualitative features already observed in the case r=1 are still
present for larger r. In particular, the fidelity turns equal to 1
for h>1 and h<<1, whereas for intermediate magnetic fields
it shows a minimum.

It is worth summarizing at this point the two main fea-
tures disclosed by the above analysis. Namely, (i) the inten-
sive nature of the temperature depends on the global tem-
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FIG. 4. For fixed B=10 we plot the fidelity F[€, (B),p, ()]
between the states (), ,(B) [the reduced state of two particles r
distant obtained from a thermal state £),,,(8)] and p, (B) [the re-
duced state of two particles r distant obtained from a thermal state
Q,(B) with n— o] for r=3,5,7 (bottom to top). Recall that r de-
notes the distance between two spins.

perature of the system itself, and (ii) the temperature ceases
to be intensive in a limited region of the phase space,
namely, for intermediate magnetic fields around the zero-T
critical point. As we will mention later on, we obtained simi-
lar results also in systems different from the one given by
Eq. (2).

III. EFFECTIVE LOCAL TEMPERATURE

We have seen in Sec. II that for some values of the Hamil-
tonian parameters and the temperature, a two-particle block
of a thermal state may be different from a two-particle ther-
mal state under the same Hamiltonian at the same tempera-
ture. Now, we focus on the reduced state p,, and look for a
valid description of it in terms of only a few thermodynamic
magnitudes. A key point in the attempt to describe the re-
duced states is the fact that under some natural circum-
stances, they will become with high probability close to a
thermal state [5,6]. This follows from the general structure of
the Hilbert space of the global system, and the restriction
over the total energy [21]. In this direction, the results in
Refs. [5,6] are quite general but their application to a specific
system has to be taken cautiously. In particular, a thermal
state is recovered when the interaction between the parts of
the system under consideration is negligible with respect to
the interactions inside the parts themselves. This condition,
however, may not always be satisfied. When the parts taken
into account are composed of two spins only, as analyzed in
Sec. II, it is then nontrivial that the reduced states are actu-
ally in a thermal state of their respective Hamiltonian. None-
theless, we will see that this is indeed the case in the majority
of the circumstances.

Following these considerations we check whether the re-
duced state is a thermal state as well, but at an effective local
temperature different from the one of the global system. That
is, even if the temperature may not be intensive, the reduced
states may still have a simple thermodynamical description.
To this end, we consider a generic m-particle thermal state

PHYSICAL REVIEW A 79, 052340 (2009)
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FIG. 5. The optimized inverse temperature ,25; (local temperature)
of a reduced subsystem of two spins as a function of 8 (8=1/T,
where T is the global temperature of the system), for different val-
ues of /.

Q,,(B") and look for the effective optimal temperature B for
which such a state better describes the actual m-particle re-
duced state p,,(B). As outlined in Sec. II, we assume that the
local interaction H,, is the same as in the global system H,

(actually I:I,,, is obtained from IEI,Z by tracing out the n—m
disregarded spins); we only have to adjust the temperature.
In order to check the quality of this description, we compute
the fidelity between the reduced state and the reference ther-
mal state, and then optimize the temperature of the latter.
That is, once we compute the traced state p,,(8) for any
given 3, we optimize over the parameter 8’ the fidelity func-
tion F[Q,,(8').p,,(B)]. In this way, as said, we identify an

effective local temperature B’ = ,é for the reduced state of the
system.
Operating similarly as in Sec. II, we study for m=2 the

relation between 8 and E? As shown in Fig. 5, we have that

B= B for low values of B (i.e., the local temperature is the
same as the global one). Thus, this range of temperatures can
be identified as a classical regime, where both the local and
the global temperatures coincide, and the temperature be-
haves as an intensive magnitude. By lowering the tempera-

ture this equality stops to hold, and the value of ,E saturates.
For even lower temperatures of the global system, the re-
duced state keeps the same effective temperature, even in
conditions of zero T" where the whole chain is in its ground
state. As above, this is due to the fact that for sufficiently
small 7, the reduced states hardly change with temperature.

Notice also that the relation [3~ B holds even for small tem-
perature when the magnetic field vanishes (i.e., #<<1). This
is true also for 2>1 (not shown in the figure) and can be
understood in view of the considerations made in Sec. II.
Performing the optimization over the local temperature,
we improved dramatically the previous values of the fidelity,
as can be seen comparing Figs. 2 and 6 [22]. As a matter of
fact, after the local optimization the fidelity is everywhere

almost 1, attaining the minimum of F[Q,(B),p-(8)]
~(.975 for h=0.6. Such result implies that a local tempera-

ture ,E’ may be defined for almost every 8 and &, even if such
local temperature is no longer intensive. In other words, the
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FIG. 6. Optimized fidelity FoptzF[Qz(E),ﬁz(B)] between the
thermal state Q,(B) at an optimized inverse temperature B (local
temperature) and the reduced state p,(8) of two spins at inverse
temperature B (global temperature). Compared with Fig. 2 the val-
ues of the fidelity are sensibly higher.

findings in Refs. [5,6] can be applied, at least approximately,
also in cases like the one studied here. This is in a sense
surprising, since here the assumptions used to derive the re-
sults of Refs. [5,6] are no longer satisfied. In particular, the
block we are considering is composed by only two particles,
implying that the interaction between it and the rest of the
system cannot be disregarded a priori. Let us notice more-
over that the definition of a local temperature is not com-
pletely satisfactory for intermediate magnetic field 4 at low
temperature. This resembles the results obtained in Sec. II
even if, as said, the fidelity here obtained is much higher. We
will comment on this in Sec. V

In order to check the sensitivity of the local temperature B

to small changes in the parameters, we studied the derivative

2%;1@ as a function of the local field # which drives the quan-

tum phase transition. We plot the results in Fig. 7, where a
singular value around the critical point appears. This shows
that minor changes in the global temperature will strongly
change the local thermal properties of the reduced sub-
system. The comparison of Figs. 3 and 7 shows that the
influence at finite 7 of the quantum phase transition is more
pronounced for local effective temperatures.

0.96 0.98 1 1.02 1.04

FIG. 7. Value of ﬁ%"@ as a function of the local field i (B
=100,250,1000).
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FIG. 8. Fidelity F[p,(B),p.(B+AB)] between the two reduced
states of a system at inverse temperatures B and B+AB (AB
=0.3,0.5,0.7, from top to bottom). The magnetic field is set to A
=0.1.

We complete the study of two-particle reduced states
comparing two of them at slightly different temperatures. In
particular, we compute the fidelity F[p,(8),p,(8+AB)] be-
tween two reduced states at temperatures 8 and B+Ap as a
function of the global system temperature 8. Here p,(8) is
again a two-particle reduced state of a chain at global tem-
perature B. In Fig. 8 we show the fidelity as a function of 8
for different values of AB. The value of B for which
Flp,(B),p(B+AB)]=1, combined with the preceding re-
sults, suggests that above a given S the states are equal and
independent of the temperature. This is a direct indication of
the asymptotic character of the reduced states p,(8) for low
temperatures, as already expected from Eq. (6). In addition,
the values of the fidelity for different A3 appear converging
to 1 at a value of B consistent with the saturation of the local
temperature found in this section.

IV. ANALYSIS FOR INCREASING BLOCK SIZE

In Secs. I and III we mainly discussed reduced blocks
consisting of two spins, not necessarily contiguous. Now, we
extend our considerations to larger blocks. Recall that in the
case of two-particle blocks we considered the whole system
in the thermodynamic limit (n—o0) and were able to con-
struct the density matrix of the block via the two-body corr-
elators in Egs. (3)—(5). Even if such a procedure can be in
principle extended to higher-order correlators (for the three-
spin correlators see, for instance, [23]), it is more convenient
to use a different strategy when blocks of arbitrary length are
considered. Specifically, we use the MPS formalism, a nu-
merical tool which has been shown to describe with high
precision ground and thermal states of 1D local Hamilto-
nians. Using the MPS formalism for mixed states [24,25], we
construct thermal states and compute correlation functions in
an efficient way. Within the adopted numerical approach, we
cannot work directly in the thermodynamical limit. However,
the MPS formalism allows simulation of systems large
enough to accurately reproduce the thermodynamical limit.
We checked that systems composed of around 50 spins al-
ready suffice to obtain results indistinguishable with the cor-
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responding ones in the thermodynamical limit. We will ex-
plicitly show in the following such a comparison.

The interest in considering blocks of increasing size is
motivated by the following observations. On one hand, when
the block increases in size the interaction between the latter
and the rest of the system becomes less relevant when com-
pared with the interactions inside the block itself. This may
intuitively lead to guessing that the rest of the system plays a
negligible role in the thermalization process. In other words,
each block in which the global system may be divided could
be considered as a system on its own, thus thermalizing with
the global environment independently from the rest. In such
a scenario the temperature would clearly be intensive, for
large enough block size. On the other hand, there are situa-
tions in which it is not possible to disregard any part of the
whole system, in particular when the latter is in a highly
correlated state (e.g., near a phase transition). Thus, an analy-
sis of the intensive nature of temperature as a function of the
system size can identify which of these two tendencies pre-
vails and in which setting.

Before proceeding, let us briefly recall the MPS formal-
ism (see [24] for more details). This representation is based
on a set of matrices A} of size D X D used to write a quantum
state as

d
[Wyps) = 2 Tr(A) - AS)|sy -+ s,). (15)

spes=1

We can write mixed states in the MPS formalism introducing
at each position an ancillary system a; of dimension d. Thus,
the thermal state p is written as a pure state in a Hilbert space
of larger dimension as

d d n
=2 X Tr(HAik’“k>ls1---sn>|a1---a,,>. (16)
k=1

Sp Sy Ay

Using this purification one can recover the thermal state trac-
ing out the ancillary systems a;, p=Tr,(|p){p|).

With this representation we can compute expectation val-
ues efficiently using the relation

<01 0n>p:Tr(El,0| '“En,On)’ (]7)

where E; o= (s'|O|s)M}" , and the set of matrices M, is
the result of tracing the ancilla states

d
My =2 A ® (A} )", (18)
a=1

With an initial MPS representation of a state at 8=0,
which corresponds to the completely mixed state 1, we ob-
tain the state pocexp(—BH) using

e—ﬂH — (e—AzH)M](e—AtH)M’ (19)

where Ar=8/2M. In this way the thermal state at tempera-
ture S is the result of the evolution in imaginary time of the
completely mixed state, an evolution that can also be per-
formed in an efficient way by means of a Trotter decompo-
sition of the time evolution operator. Using this numerical
technique we can extend the calculation of the correlation
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FIG. 9. The local inverse temperature E of a reduced subsystem
of m spins as a function of the global inverse temperature 3 of the
system. (The magnetic field is set to 2=0.8; the matrices size for the
MPS algorithm is set to D=15.) From bottom to top we set m
=2,3,4,5,6. The dashed-dotted line shows ,8:[9 for reference. We
see that for larger blocks the local temperature gets closer to the
global one. The actual region in which the temperature is intensive
does not seem to be affected by the size of the block (m>2).

functions up to m=6, the computational limit being the con-
struction of the state p from the corresponding correlators as
in Eq. (8).

We plot in Fig. 9 the effective local temperature Bas a
function of the global one, B, for reduced systems of size
m=2-6. The first feature that one may note is that the local
optimized temperature tends to get closer to the global one as
the block size increases. This is in agreement with the trivial
fact that for large block size the local and global tempera-
tures coincide, as the block itself coincides with the whole
system. Furthermore, as mentioned above, as the block size
increases the interaction between the latter and the rest of the
system becomes less relevant. Thus, the block will be in a
thermal state with high probability, as a consequence of the
results exposed in Refs. [5,6]. For each curve depicted in
Fig. 9, we checked explicitly the fidelity between a thermal

state at temperature ,E’ and the actual reduced state. We ob-
tained that all along these curves, the fidelity is very close to
1, confirming that the results in Refs. [5,6] can be applied to
the finite systems considered here. In turn, this points to the
fact that the systems are already near the thermodynamic
limit, at least for what concerns the properties of their re-
duced states. However, the fact that the blocks are thermal
does not mean that the temperature is intensive. As said, Fig.
9 shows that the local temperature get closer to the global
one for larger blocks. Nevertheless the actual region in which
the temperature is intensive does not seem to be much af-
fected by the size of the blocks. This suggests that the quan-
tum fidelity analysis reveals fine features of the systems that
cannot be understood by considerations regarding only the
energy balance between the various parts of the system. In
particular, as mentioned above, correlations should be con-
sidered in order to clarify such a behavior.

We also notice that for each value of m a different satu-

ration value of [3 is obtained. The latter corresponds to the
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FIG. 10. We plot the local inverse temperature E reached by the
reduced subsystem of m spins as a function of the magnetic field 4.
(The global inverse temperature is set to S=15.) From bottom to
top the size of the block increases (m=2,3,4,5,6).

effective temperature of the reduced states when the whole
system is at zero 7. Thus for the ground states of the consid-
ered systems, the temperature is clearly not intensive, as ex-
pected. On the other hand, for high enough temperature, we
can identify again a classical regime—i.e., a regime in which
the temperature is intensive. In general, outside this classical
region we observe that the local temperature is sensibly
higher than the global one.

Before concluding this section let us consider the influ-
ence of the zero-T properties of the system at small tempera-
tures. As seen in Sec. III (see Fig. 7), we expect that at small
temperatures the features of the system ground state can be
revealed by an analysis of the local temperature as a function
of the local field A. The results for =15 are plotted in Fig.
10. In accordance with the results reported in Fig. 9, as the
block size increases the local temperature gets closer to the
global ones for any value of 4. Furthermore, notice that as

the block size increases, the minimum of ﬁ (that identifies
when the temperature deviates mostly from an intensive be-
havior) gets closer to h.. This behavior around the critical
value of the field h=1 suggests that zero-T properties of the
system ground state have an important influence on the ther-
mal state of the block.

V. CONCLUSIONS

With the study of many-body systems using thermody-
namic quantities, one may obtain global properties of a sys-
tem by measurements performed only on a local (reduced)
part of it. However, depending on the conditions of the
physical system under consideration, some of the fundamen-
tal assumptions of statistical equilibrium may fail and a valid
thermodynamical description cannot be possible. We have
identified this situation in spin chains at low temperatures,
where the reduced states are not thermal states at the same
temperature as the global system. In particular, we have seen
that the temperature ceases to be an intensive magnitude in
dependence on the global temperature itself, a feature with-
out classical analog. This result is in accordance with the
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findings reported in Ref. [3]. Notice, however, that here we
made no assumption on the correlations between the blocks
in which the global system may be decomposed. In fact, we
focused only on the reduced local state of the system. Our
approach is motivated by an operational viewpoint, since an
actual measure performed on a local part of a system gives
no information about correlations with other parts of it.

Remarkably, we have seen that an effective thermody-
namical description of the reduced states is often still pos-
sible, despite that the temperature may not be an intensive
magnitude. In particular, the resulting reduced states can be
described with high accuracy as thermal states at an opti-
mized temperature. Interestingly, this is valid (i) without any
additional assumption on the interactions, and (ii) even if we
considered blocks of particularly small size (i.e., composed
of two to six spins). This local temperature becomes of
course equal to the global one in the regime of high tempera-
tures, where we recover the classical behavior. However, by
lowering the temperature of the global system, the local tem-
perature saturates at some point. In other words, depending
on the system parameters, the local temperature may be dif-
ferent from zero even when the global system is in the
ground state. The dependence of the local temperature on the
size of the blocks has been studied too. As one may expect,
the local temperature get closer to the global one for larger
blocks.

We pointed out that the departure from the classical be-
havior is more pronounced at low temperatures and for in-
termediate values of the local magnetic field, around the
zero-T critical point. (This is true concerning both the inten-
sive behavior of temperature and the definition of a local
temperature, as can be seen in Figs. 2, 4, and 6.) Notice that
this is the region of parameters where quantum correlations
are expected to be stronger. For example, at zero temperature
the pairwise entanglement between two spins shows its
higher values in this region [19,26], as well as the entangle-
ment between a block of spins and the rest [27]. Though the
existence of a finite block entropy may suggest that entangle-
ment plays a crucial role in all these results, preliminary
studies indicate that the relation between quantum correla-
tions and the definition of a local temperature is nontrivial.
Thus it will be a subject of further studies the way in which
quantum and classical correlations lead to the behaviors
identified here.

Let us mention here that we have analyzed also other
Hamiltonian systems. In this paper we have shown a study of
the transverse Ising model, but the extension to a generic XY
interaction leads to similar results and conclusions. Applying
the MPS techniques we can extend the analysis to spin mod-
els with arbitrary interaction, such as spin chains with
Heisenberg interaction. Furthermore, we analyzed chains
consisting of harmonic oscillators with quadratic interaction
(harmonic chains). In all these cases, the obtained results
were qualitatively very similar to those shown here.

In order to assess the canonical character of the reduced
states we employed the quantum fidelity, a quantity exten-
sively used in quantum information science. We have seen
that the fidelity is particularly suitable when studying the
limits of applicability of the concept of intensive tempera-
ture. In particular, harnessing the sensitivity of quantum fi-
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delity, we have observed how the low-temperature features
of the systems influence our results. This suggests that the
quantum fidelity analysis reveals fine features of the systems
that cannot be understood by considerations regarding only
the energy balance between the various parts of the system.
In particular, as said, future investigations should consider
the role of correlations in order to clarify such a behavior.
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