65 research outputs found

    Horizon scanning to assess the bioclimatic potential for the alien species Spodoptera eridania and its parasitoids after pest detection in west and central Africa

    Get PDF
    BACKGROUND The southern armyworm (SAW) Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae) is native to the tropical Americas where the pest can feed on more than 100 plant species. SAW was recently detected in West and Central Africa, feeding on various crops including cassava, cotton, amaranth and tomato. The current work was carried out to predict the potential spatial distribution of SAW and four of its co-evolved parasitoids at a global scale using the maximum entropy (Maxent) algorithm. RESULTS SAW may not be a huge problem outside its native range (the Americas) for the time being, but may compromise crop yields in specific hotspots in coming years. The analysis of its potential distribution anticipates that the pest might easily migrate east and south from Cameroon and Gabon. CONCLUSION The models used generally demonstrate that all the parasitoids considered are good candidates for the biological control of SAW globally, except they will not be able to establish in specific climates. The current paper discusses the potential role of biological control using parasitoids as a crucial component of a durable climate-smart integrated management of SAW to support decision making in Africa and in other regions of bioclimatic suitability

    Seasonal variations of Spodoptera frugiperda host plant diversity and parasitoid complex in southern and central Benin

    Get PDF
    Open Access Journal; Published online: 24 May 2022Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) was recorded for the first time in 2016 attacking maize fields in central and west Africa. Soon after, several other regions and countries have reported the pest in almost the entire sub-Saharan Africa. In the present study, we assumed that (i) a variety of alternative plant species host FAW, especially during maize off-season, (ii) a wide range of local parasitoids have adapted to FAW and (iii) parasitoid species composition and abundance vary across seasons. During a two-year survey (from June 2018 to January 2020), parasitoids and alternative host plants were identified from maize and vegetable production sites, along streams and lowlands, on garbage dumps and old maize fields in southern and partly in the central part of Benin during both maize growing- and off-season. A total of eleven new host plant species were reported for the first time, including Cymbopogon citratus (de Candolle) Stapf (cultivated lemon grass), Bulbostylis coleotricha (A. Richard) Clarke and Pennisetum macrourum von Trinius (wild). The survey revealed seven parasitoid species belonging to four families, namely Platygastridae, Braconidae, Ichneumonidae, and Tachinidae associated with FAW on maize and alternative host plants. The most abundant parasitoid species across seasons was the egg parasitoid Telenomus remus (Nixon) (Hymenoptera: Platygastridae). These findings demonstrate FAW capability to be active during the maize off-season in the selected agro-ecologies and provide baseline information for classical and augmentative biocontrol efforts

    Monitoring Spodoptera frugiperda in Benin: assessing the influence of trap type, pheromone blends, and habitat on pheromone trapping

    Get PDF
    Published online: 12 Apr 2022The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), has now become a pest of global concern. Originally known to be endemic to the Western Hemisphere, its first detection in Africa was followed by spectacular outbreaks and spread to almost all sub-Saharan countries. The rapid incursion of S. frugiperda on maize (Zea mays L.; Poaceae) fields in Africa highlighted a crucial need for a comprehensive assessment of integrated pest management strategies in most smallholder farms. However, these strategies cannot successfully function without efficient monitoring and surveillance efforts. These trapping studies were designed to provide an indication as to whether pheromone trap-lure combinations and simple changes in landscape and agricultural practices might mitigate fall armyworm infestations. Our data show that the commercially available Unitrap was the most effective design for fall armyworm captures among the traps tested. The inexpensive home-made 2 L jar trap was capable of consistently collecting fall armyworm during the first season of relatively moderate fall armyworm density. However, the number of fall armyworm captured by home-made trap were several fold lower than by the Unitrap under all conditions, and almost no fall armyworm was captured during the second season by home-made 2 L jar when fall armyworm density was low. Substantial differences were observed among the pheromone blends with respect to numbers of fall armyworm and non-targets captured. The 4-component blend attracted the most fall armyworm under all conditions. The 2-component blend was the most selective, with no non-target species found during the second season experiments

    The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption.

    Get PDF
    Lambda-cyhalothrin (λ-cyhalothrin) is the most commonly used pyrethroid insecticide for vegetable farming in Benin. This insecticide is misused and overused by farmers, and hence may pose health hazards to consumers. We monitored λ-cyhalothrin residues in lettuce and cabbage from farms at the market gates in Cotonou and Parakou using high performance liquid chromatography (HPLC) analysis techniques. These residues were also monitored on samples directly from farms (on-farm sampling) for 14 days post-treatment. Potential factors such as photolysis and hydrolysis involved in λ-cyhalothrin degradation were also screened. Results revealed that the level of λ-cyhalothrin residue concentrations in lettuce from Houeyiho decreased from 4.2 mg/kg on Day 1 to about 0.2 mg/kg on Day 7. On Day 9, analyzed lettuces were all λ-cyhalothrin free. In contrast, even 14 days after treatment of cabbage from Bawera (Parakou), we still recorded the presence of λ-cyhalothrin residues in analyzed samples. For samples from market gates, λ-cyhalothrin residues were found in lettuce from two markets out of the nine surveyed in Cotonou. Interestingly, none of these contaminated samples had residues above the maximum residue limit for lettuce (MRL = 0.5 mg/kg). Similarly, in Parakou, samples from all five surveyed vegetable markets were contaminated with λ-cyhalothrin residues at concentrations below the MRL for cabbage (MRL = 0.2 mg/kg). We conclude that λ-cyhalothrin residues in lettuce and cabbage from farms and markets in Parakou and Cotonou are within the MRL, and hence are relatively safe for consumption

    Investing in the future: lessons learnt from communicating the results of HSV/ HIV intervention trials in South Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Communicating the results of randomised controlled trials may present challenges for researchers who have to work with communities and policy-makers to anticipate positive outcomes, while being aware that results may show no effect or harm.</p> <p>Methods</p> <p>We present a case study from the perspective of researchers in South Africa about the lessons learnt from communicating the results of four trials evaluating treatment for herpes simplex virus type 2 (HSV-2) as a new strategy for HIV prevention.</p> <p>Results</p> <p>We show that contextual factors such as misunderstandings and mistrust played an important role in defining the communications response. Use of different approaches in combination was found to be most effective in building understanding, credibility and trust in the research process. During the communication process, researchers acted beyond their traditional role of neutral observers and became agents of social change. This change in role is in keeping with a global trend towards increased communication of research results and presents both opportunities and challenges for the conduct of future research.</p> <p>Conclusions</p> <p>Despite disappointing trial results which showed no benefit of HSV-2 treatment for HIV prevention, important lessons were learnt about the value of the communication process in building trust between researchers, community members and policy-makers, and creating an enabling environment for future research partnerships.</p

    Global habitat suitability of Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae): key parasitoids considered for its biological control

    Get PDF
    Open Access Journal; Published online: 24 Mar 2021The present study is the first modeling effort at a global scale to predict habitat suitability of fall armyworm (FAW), Spodoptera frugiperda and its key parasitoids, namely Chelonus insularis, Cotesia marginiventris,Eiphosoma laphygmae,Telenomus remus and Trichogramma pretiosum, to be considered for biological control. An adjusted procedure of a machine-learning algorithm, the maximum entropy (Maxent), was applied for the modeling experiments. Model predictions showed particularly high establishment potential of the five hymenopteran parasitoids in areas that are heavily affected by FAW (like the coastal belt of West Africa from Côte d’Ivoire (Ivory Coast) to Nigeria, the Congo basin to Eastern Africa, Eastern, Southern and Southeastern Asia and some portions of Eastern Australia) and those of potential invasion risks (western & southern Europe). These habitats can be priority sites for scaling FAW biocontrol efforts. In the context of global warming and the event of accidental FAW introduction, warmer parts of Europe are at high risk. The effect of winter on the survival and life cycle of the pest in Europe and other temperate regions of the world are discussed in this paper. Overall, the models provide pioneering information to guide decision making for biological-based medium and long-term management of FAW across the globe

    Endotoxemia Is Associated with Altered Innate and Adaptive Immune Responses in Untreated HIV-1 Infected Individuals

    Get PDF
    BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies) and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10) with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC) from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA) were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART), 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our results suggest that microbial translocation may be associated with innate and adaptive immune dysfunction in untreated HIV infection

    Characterization of sequences in human TWIST required for nuclear localization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Twist is a transcription factor that plays an important role in proliferation and tumorigenesis. Twist is a nuclear protein that regulates a variety of cellular functions controlled by protein-protein interactions and gene transcription events. The focus of this study was to characterize putative nuclear localization signals (NLSs) <sup>37</sup>RKRR<sup>40 </sup>and <sup>73</sup>KRGKK<sup>77 </sup>in the human TWIST (H-TWIST) protein.</p> <p>Results</p> <p>Using site-specific mutagenesis and immunofluorescences, we observed that altered TWIST<sup>NLS1 </sup>K38R, TWIST<sup>NLS2 </sup>K73R and K77R constructs inhibit nuclear accumulation of H-TWIST in mammalian cells, while TWIST<sup>NLS2 </sup>K76R expression was un-affected and retained to the nucleus. Subsequently, co-transfection of TWIST mutants K38R, K73R and K77R with E12 formed heterodimers and restored nuclear localization despite the NLSs mutations. Using a yeast-two-hybrid assay, we identified a novel TWIST-interacting candidate TCF-4, a basic helix-loop-helix transcription factor. The interaction of TWIST with TCF-4 confirmed using NLS rescue assays, where nuclear expression of mutant TWIST<sup>NLS1 </sup>with co-transfixed TCF-4 was observed. The interaction of TWIST with TCF-4 was also seen using standard immunoprecipitation assays.</p> <p>Conclusion</p> <p>Our study demonstrates the presence of two putative NLS motifs in H-TWIST and suggests that these NLS sequences are functional. Furthermore, we identified and confirmed the interaction of TWIST with a novel protein candidate TCF-4.</p

    Harnessing data science to improve integrated management of invasive pest species across Africa: an application to Fall armyworm (Spodoptera frugiperda) (J.E. Smith) (Lepidoptera: Noctuidae)

    Get PDF
    Open Access Journal; Published online: 11 Feb 2022After five years of its first report on the African continent, Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is considered a major threat to maize, sorghum, and millet production in sub-Saharan Africa. Despite the rigorous work already conducted to reduce FAW prevalence, the dynamics and invasion mechanisms of FAW in Africa are still poorly understood. This study applied interdisciplinary tools, analytics, and algorithms on a FAW dataset with a spatial lens to provide insights and project the intensity of FAW infestation across Africa. The data collected between January 2018 and December 2020 in selected locations were matched with the monthly average data of the climatic and environmental variables. The multilevel analytics aimed to identify the key factors that influence the dynamics of spatial and temporal pest density and occurrence at a 2 km x 2 km grid resolution. The seasonal variations of the identified factors and dynamics were used to calibrate rule-based analytics employed to simulate the monthly densities and occurrence of the FAW for the years 2018, 2019, and 2020. Three FAW density level classes were inferred, i.e., low (0–10 FAW moth per trap), moderate (11–30 FAW moth per trap), and high (>30 FAW moth per trap). Results show that monthly density projections were sensitive to the type of FAW host vegetation and the seasonal variability of climatic factors. Moreover, the diversity in the climate patterns and cropping systems across the African sub-regions are considered the main drivers of FAW abundance and variation. An optimum overall accuracy of 53% was obtained across the three years and at a continental scale, however, a gradual increase in prediction accuracy was observed among the years, with 2020 predictions providing accuracies greater than 70%. Apart from the low amount of data in 2018 and 2019, the average level of accuracy obtained could also be explained by the non-inclusion of data related to certain key factors such as the influence of natural enemies (predators, parasitoids, and pathogens) into the analysis. Further detailed data on the occurrence and efficiency of FAW natural enemies in the region may help to complete the tri-trophic interactions between the host plants, pests, and beneficial organisms. Nevertheless, the tool developed in this study provides a framework for field monitoring of FAW in Africa that may be a basis for a future decision support system (DSS)

    The harlequin ladybird, Harmonia axyridis: global perspectives on invasion history and ecology

    Get PDF
    The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people
    corecore