17 research outputs found

    Inhibition of activation induced CD154 on CD4+ CD25- cells: a valid surrogate for human Treg suppressor function

    Get PDF
    Natural Regulatory T cells (Tregs) are defined by stable expression of the cell surface proteins CD4 and CD25, low surface expression of CD127 and expression of the transcription factor FOXP3. The contribution of Treg to the prevention of autoimmunity and the maintenance of immune homoestasis is the subject of ongoing interest, as alterations in Treg numbers and function are implicated in a wide range of diseases. The in vitro benchmark for determining Treg function is suppression of proliferation of unmatched effector T cells in a mixed lymphocyte reaction (MLR) over a 3–6-day time period. As an alternative to this assay, we show that a 7-h CD154 expression assay is rapid, simple and provides a reliable readout of suppressor function. Using multiple Treg-like cell types including natural (n)Treg, inducible (i)Treg and Treg cell lines, we show that suppression of CD154 expression is a surrogate for suppression of proliferation. We propose this as a suitable alternative to the MLR assay, as it is rapid and may be more amenable to high-throughput screening, analysing large cohorts of clinical samples or assaying transiently suppressive populations. Keywords: regulatory T cells; functional assays; iTreg; nTregDanika Hill, Nicola Eastaff-Leung, Suzanne Bresatz-Atkins, Noel Warner, Joyce Ruitenberg, Dorren Krumbiegel, Steve Pederson, Natasha McInnes, Cheryl Y. Brown, Timothy Sadlon and Simon C. Barr

    Robust, reversible gene knockdown using a single lentiviral short hairpin RNA vector

    Get PDF
    Manipulation of gene expression is an invaluable tool to study gene function in vitro and in vivo. The application of small inhibitory RNAs to knock down gene expression provides a relatively simple, elegant, but transient approach to study gene function in many cell types as well as in whole animals. Short hairpin structures (shRNAs) are a logical advance as they can be expressed continuously and are hence suitable for stable gene knockdown. Drug-inducible systems have now been developed; however, application of the technology has been hampered by persistent problems with low or transient expression, leakiness or poor inducibility of the short hairpin, and lack of reversibility. We have developed a robust, versatile, single lentiviral vector tool that delivers tightly regulated, fully reversible, doxycycline-responsive knockdown of target genes (FOXP3 and MYB), using single short hairpin RNAs. To demonstrate the capabilities of the vector we targeted FOXP3 because it plays a critical role in the development and function of regulatory T cells. We also targeted MYB because of its essential role in hematopoiesis and implication in breast cancer progression. The versatility of this vector is hence demonstrated by knockdown of distinct genes in two biologically separate systems.Cheryl Y. Brown, Timothy Sadlon, Tessa Gargett, Elizabeth Melville, Rui Zhang, Yvette Drabsch, Michael Ling, Craig A. Strathdee, Thomas J. Gonda, and Simon C. Barr

    PI16 is expressed by a subset of human memory Treg with enhanced migration to CCL17 and CCL20

    Get PDF
    The peptidase inhibitor PI16 was shown previously by microarray analysis to be over-expressed by CD4-positive/CD25-positive Treg compared with CD4-positive/CD25-negative Th cells. Using a monoclonal antibody to the human PI16 protein, we found that PI16-positive Treg have a memory (CD45RO-positive) phenotype and express higher levels of FOXP3 than PI16-negative Treg. PI16-positive Treg are functional in suppressor assays in vitro with potency similar to PI16-negative Treg. Further phenotyping of the PI16-positive Treg revealed that the chemokine receptors CCR4 and CCR6 are expressed by more of the PI16-positive/CD45RO-positive Treg compared with PI16-negative/CD45RO-positive Treg or Th cells. PI16-positive Treg showed enhanced in vitro migration towards the inflammatory chemokines CCL17 and CCL20, suggesting they can migrate to sites of inflammation. We conclude that PI16 identifies a novel distinct subset of functional memory Treg which can migrate to sites of inflammation and regulate the pro-inflammatory response at those sites.Ian C. Nicholson, Christos Mavrangelos, Daniel R.G. Bird, Suzanne Bresatz-Atkins, Nicola G. Eastaff-Leung, Randall H. Grose, Batjargal Gundsambuu, Danika Hill, Debbrah J. Millard, Timothy J. Sadlon, Sarah To, Heddy Zola, Simon C. Barry, Doreen Krumbiege

    Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation

    Get PDF
    Regulatory T cells (T(reg) cells) are essential for self-tolerance and immune homeostasis. Lack of effector T cell (T(eff) cell) function and gain of suppressive activity by T(reg) cells are dependent on the transcriptional program induced by Foxp3. Here we report that repression of SATB1, a genome organizer that regulates chromatin structure and gene expression, was crucial for the phenotype and function of T(reg) cells. Foxp3, acting as a transcriptional repressor, directly suppressed the SATB1 locus and indirectly suppressed it through the induction of microRNAs that bound the SATB1 3' untranslated region. Release of SATB1 from the control of Foxp3 in T(reg) cells caused loss of suppressive function, establishment of transcriptional T(eff) cell programs and induction of T(eff) cell cytokines. Our data support the proposal that inhibition of SATB1-mediated modulation of global chromatin remodeling is pivotal for maintaining T(reg) cell functionality.Marc Beyer... Timothy Sadlon...Simon C Barry... et al

    Environmental determinants of islet autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes

    Get PDF
    Members of ENDIA Study Group: Peter Baghurst, Simon Barry, Jodie Dodd, Maria Makrides for the University of Adelaide.BACKGROUND The incidence of type 1 diabetes has increased worldwide, particularly in younger children and those with lower genetic susceptibility. These observations suggest factors in the modern environment promote pancreatic islet autoimmunity and destruction of insulin-producing beta cells. The Environmental Determinants of Islet Autoimmunity (ENDIA) Study is investigating candidate environmental exposures and gene-environment interactions that may contribute to the development of islet autoimmunity and type 1 diabetes. METHODS/DESIGN ENDIA is the only prospective pregnancy/birth cohort study in the Southern Hemisphere investigating the determinants of type 1 diabetes in at-risk children. The study will recruit 1,400 unborn infants or infants less than six months of age with a first-degree relative (i.e. mother, father or sibling) with type 1 diabetes, across five Australian states. Pregnant mothers/infants will be followed prospectively from early pregnancy through childhood to investigate relationships between genotype, the development of islet autoimmunity (and subsequently type 1 diabetes), and prenatal and postnatal environmental factors. ENDIA will evaluate the microbiome, nutrition, bodyweight/composition, metabolome-lipidome, insulin resistance, innate and adaptive immune function and viral infections. A systems biology approach will be used to integrate these data. Investigation will be by 3-monthly assessments of the mother during pregnancy, then 3-monthly assessments of the child until 24 months of age and 6-monthly thereafter. The primary outcome measure is persistent islet autoimmunity, defined as the presence of autoantibodies to one or more islet autoantigens on consecutive tests. DISCUSSION Defining gene-environment interactions that initiate and/or promote destruction of the insulin-producing beta cells in early life will inform approaches to primary prevention of type 1 diabetes. The strength of ENDIA is the prospective, comprehensive and frequent systems-wide profiling from early pregnancy through to early childhood, to capture dynamic environmental exposures that may shape the development of islet autoimmunity. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry ACTRN12613000794707.Megan AS Penno, Jennifer J Couper, Maria E Craig, Peter G Colman, William D Rawlinson, Andrew M Cotterill, Timothy W Jones, Leonard C Harrison and ENDIA Study Grou

    Regulation of the rat 5-aminolevulinate synthase mRNA : the role of mRNA stability / by Timothy John Sadlon.

    No full text
    Includes bibliographical references.x, 201, [145] leaves : ill. ; 30 cm.Heme was found to specifically decrease the half-life of ALAS-1 mRNA, leading to a rapid drop in it's level following heme treatment. Provides an interesting model for studying the mechanism by which mRNAs are differentially targeted for degradation.Thesis (Ph.D.)--University of Adelaide, Dept. of Biochemistry, 1996

    Development of CD4+CD25+FoxP3+ regulatory T cells from cord blood hematopoietic progenitor cells

    No full text
    Adult stem cells are capable of generating all of the cells of the hematopoietic system, and this process is orchestrated in part by the interactions between these cells and the stroma. T cell progenitors emerge from the stem cell compartment and migrat

    Cloning and analysis of the human complement factor H gene promoter

    No full text
    The 5' flanking region of human factor H was cloned using nested polymerase chain reaction (PCR) and the promoter finder method. A total of 1.2 kb has been sequenced and a number of putative regulatory elements identified including glucocorticoid response elements, cAMP responsive element, HTF-1, and acute phase signal sequences. A 717 b.p. fragment was cloned into a CAT reporter vector and transfected into HeLa cells. A series of truncations from the 5' end of this fragment were also cloned into the CAT vector. Analysis of CAT activity of the cell lysates showed that the region from -699 to +18 is likely to contain promoter elements for the factor H gene as it was able to drive transcription of the CAT gene.Helena M Ward, Naomi H Higgs, Timothy K Blackmore, Tania A Sadlon and David L Gordo

    The GM-CSF receptor utilizes β-catenin and Tcf4 to specify macrophage lineage differentiation

    No full text
    Granulocyte–macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor β subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation and accumulation of β-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised β-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate β-catenin stability, most likely via GSK3β. Consistent with this pathway being active in primary cells we show that inhibition of GSK3β activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signaling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation.
    corecore