28 research outputs found

    Thermal insulation provided by annular air-filled cavities

    No full text
    The thermal resistances of enclosed, concentric and eccentric cavities containing air at atmospheric pressure for the temperature range 20 to 160°C are discussed. The optimal configurations required to achieve maximum insulation for the vertical and horizontal configurations are indicated. For the latter, the optimal arrangement to achieve maximum insulation occurs with the axis of the heated inner cylinder displaced vertically upwards relative to that of the outer cylinder so that the eccentricity of the arrangement is 0·24.

    The Actin Cytoskeleton and the Regulation of Cell Migration

    No full text

    Light (anti)nuclei production in Pb-Pb collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>5.02</mn><mo> </mo><mi>TeV</mi></mrow></math>

    Get PDF
    International audienceThe measurement of the production of deuterons, tritons and He3 and their antiparticles in Pb-Pb collisions at sNN=5.02TeV is presented in this article. The measurements are carried out at midrapidity (|y|&lt; 0.5) as a function of collision centrality using the ALICE detector. The pT-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different center-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities

    <math display="inline"><mrow><mi>ψ</mi><mo stretchy="false">(</mo><mn>2</mn><mi>S</mi><mo stretchy="false">)</mo></mrow></math> Suppression in Pb-Pb Collisions at the LHC

    No full text
    International audienceThe production of the ψ(2S) charmonium state was measured with ALICE in Pb-Pb collisions at sNN=5.02  TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5&lt;y&lt;4). The measurement of the ratio of the inclusive production cross sections of the ψ(2S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region pT&lt;12  GeV/c. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio [σψ(2S)/σJ/ψ]Pb-Pb/[σψ(2S)/σJ/ψ]pp. It is found that in Pb-Pb collisions the ψ(2S) is suppressed by a factor of ∌2 with respect to the J/ψ. The ψ(2S) nuclear modification factor RAA was also obtained as a function of both centrality and pT. The results show that the ψ(2S) resonance yield is strongly suppressed in Pb-Pb collisions, by a factor of up to ∌3 with respect to pp. Comparisons of cross section ratios with previous Super Proton Synchrotron findings by the NA50 experiment and of RAA with higher-pT results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC

    First measurement of <math><msubsup><mi mathvariant="normal">Λ</mi><mrow><mi>c</mi></mrow><mo>+</mo></msubsup></math> production down to <math><mrow><msub><mi>p</mi><mi>T</mi></msub><mo>=</mo><mn>0</mn></mrow></math> in <math><mrow><mi>p</mi><mi>p</mi></mrow></math> and <math><mi>p</mi></math>-Pb collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>5.02</mn></mrow></math> TeV

    Get PDF
    International audienceThe production of prompt Λc+ baryons has been measured at midrapidity in the transverse momentum interval 0&lt;pT&lt;1 GeV/c for the first time, in pp and p–Pb collisions at a center-of-mass energy per nucleon-nucleon collision sNN=5.02TeV. The measurement was performed in the decay channel Λc+→pKS0 by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning approach for the candidate selection. The pT-integrated Λc+ production cross sections in both collision systems were determined and used along with the measured yields in Pb–Pb collisions to compute the pT-integrated nuclear modification factors RpPb and RAA of Λc+ baryons, which are compared to model calculations that consider nuclear modification of the parton distribution functions. The Λc+/D0 baryon-to-meson yield ratio is reported for pp and p–Pb collisions. Comparisons with models that include modified hadronization processes are presented, and the implications of the results on the understanding of charm hadronization in hadronic collisions are discussed. A significant (3.7σ) modification of the mean transverse momentum of Λc+ baryons is seen in p–Pb collisions with respect to pp collisions, while the pT-integrated Λc+/D0 yield ratio was found to be consistent between the two collision systems within the uncertainties

    Azimuthal correlations of heavy-flavor hadron decay electrons with charged particles in pp and p–Pb collisions at sNN\pmb {\sqrt{s_{\mathrm{{NN}}}}} = 5.02 TeV

    Get PDF
    International audienceThe azimuthal (Δφ\Delta \varphi ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at sNN=5.02\sqrt{s_{\mathrm{{NN}}}} = 5.02 TeV. Results are reported for electrons with transverse momentum 4<pT<16GeV/c4<p_{\textrm{T}}<16\textrm{GeV}/c and pseudorapidity ∣η∣<0.6|\eta |<0.6. The associated charged particles are selected with transverse momentum 1<pT<7GeV/c1<p_{\textrm{T}}<7\textrm{GeV}/c, and relative pseudorapidity separation with the leading electron âˆŁÎ”Î·âˆŁ<1|\Delta \eta | < 1. The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The Δφ\Delta \varphi distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators

    Jet-like correlations with respect to KS0^{0}_{\rm S} and Λ\Lambda (Λˉ\bar{\Lambda}) in pp and Pb-Pb collisions at sNN\mathbf{\it\sqrt{s_\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceTwo-particle correlations with KS0\textrm{K}^{0}_\mathrm{{S}}, Λ\Lambda /Λ‟\overline{\Lambda }, and charged hadrons as trigger particles in the transverse momentum range 8{3 GeV/cc as expected from strong in-medium energy loss, while an enhancement develops at low pT,assocp_{{\textrm{T}},{\textrm{assoc}}} on both the near and away sides, reaching IAA≈1.8I_{\textrm{AA}}\approx 1.8 and 2.7 respectively. These findings are in good agreement with previous ALICE measurements from two-particle correlations triggered by neutral pions (π0\pi ^{0}–h) and charged hadrons (h–h) in Pb–Pb collisions at sNN = 2.76\sqrt{s_{\textrm{NN}}}~=~2.76 TeV. Moreover, the correlations with KS0\textrm{K}^{0}_\mathrm{{S}} mesons and Λ\Lambda /Λ‟\overline{\Lambda } baryons as trigger particles are compared to those of inclusive charged hadrons. The results are compared with the predictions of Monte Carlo models

    Accessing the strong interaction between Λ baryons and charged kaons with the femtoscopy technique at the LHC

    No full text
    The interaction between Λ baryons and kaons/antikaons is a crucial ingredient for the strangeness S=0 and S=−2 sector of the meson–baryon interaction at low energies. In particular, the ΛK‟ might help in understanding the origin of states such as the Ξ(1620), whose nature and properties are still under debate. Experimental data on Λ–K and Λ–K‟ systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of Λ–K⊕+Λ‟–K− and Λ–K⊕−Λ‟–K+ correlations obtained in the high-multiplicity triggered data sample in pp collisions at s=13 TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the LednickĂœâ€“Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The Λ–K⊕−Λ‟–K+ correlations show the presence of several structures at relative momenta k⁎ above 200 MeV/c, compatible with the Ω baryon, the Ξ(1690), and Ξ(1820) resonances decaying into Λ–K− pairs. The low k⁎ region in the Λ–K⊕−Λ‟–K+ also exhibits the presence of the Ξ(1620) state, expected to strongly couple to the measured pair. The presented data allow to access the ΛK+ and ΛK− strong interaction with an unprecedented precision and deliver the first experimental observation of the Ξ(1620) decaying into ΛK−
    corecore