86 research outputs found
Development of a digital intervention for psychedelic preparation (DIPP)
Psychedelic substances induce profound alterations in consciousness. Careful preparation is therefore essential to limit adverse reactions, enhance therapeutic benefits, and maintain user safety. This paper describes the development of a self-directed, digital intervention for psychedelic preparation. Drawing on elements from the UK Medical Research Council (MRC) framework for developing complex interventions, the design was informed by a four-factor model of psychedelic preparedness, using a person-centred approach. Our mixed-methods investigation consisted of two studies. The first involved interviews with 19 participants who had previously attended a 'high-dose' psilocybin retreat, systematically exploring their preparation behaviours and perspectives on the proposed intervention. The second study engaged 28 attendees of an ongoing psilocybin retreat in co-design workshops, refining the intervention protocol using insights from the initial interviews. The outcome is a co-produced 21-day digital course (Digital Intervention for Psychedelic Preparation (DIPP)), that is organised into four modules: Knowledge-Expectation, Psychophysical-Readiness, Safety-Planning, and Intention-Preparation. Fundamental components of the course include daily meditation practice, supplementary exercises tied to the weekly modules, and mood tracking. DIPP provides a comprehensive and scalable solution to enhance psychedelic preparedness, aligning with the broader shift towards digital mental health interventions
Neurophenomenological Investigation of Mindfulness Meditation “Cessation” Experiences Using EEG Network Analysis in an Intensively Sampled Adept Meditator
Mindfulness meditation is a contemplative practice that is informed by Buddhism. It has been proven effective for improving mental and physical health in clinical and non-clinical contexts. To date, mainstream dialogue and scientific research on mindfulness has focused primarily on short-term mindfulness training and applications of mindfulness for reducing stress. Understanding advanced mindfulness practice has important implications for mental health and general wellbeing. According to Theravada Buddhist meditation, a “cessation” event is a dramatic experience of profound clarity and equanimity that involves a complete discontinuation in experience, and is evidence of mastery of mindfulness meditation. Thirty-seven cessation events were captured in a single intensively sampled advanced meditator (over 6,000 h of retreat mindfulness meditation training) while recording electroencephalography (EEG) in 29 sessions between November 12, 2019 and March 11, 2020. Functional connectivity and network integration were assessed from 40 s prior to cessations to 40 s after cessations. From 21 s prior to cessations there was a linear decrease in large-scale functional interactions at the whole-brain level in the alpha band. In the 40 s following cessations these interactions linearly returned to prior levels. No modulation of network integration was observed. The decrease in whole-brain functional connectivity was underlain by frontal to left temporal and to more posterior decreases in connectivity, while the increase was underlain by wide-spread increases in connectivity. These results provide neuroscientific evidence of large-scale modulation of brain activity related to cessation events that provides a foundation for future studies of advanced meditation
Structural abnormality of the corticospinal tract in major depressive disorder
BACKGROUND: Scientists are beginning to document abnormalities in white matter connectivity in major depressive disorder (MDD). Recent developments in diffusion-weighted image analyses, including tractography clustering methods, may yield improved characterization of these white matter abnormalities in MDD. In this study, we acquired diffusion-weighted imaging data from MDD participants and matched healthy controls. We analyzed these data using two tractography clustering methods: automated fiber quantification (AFQ) and the maximum density path (MDP) procedure. We used AFQ to compare fractional anisotropy (FA; an index of water diffusion) in these two groups across major white matter tracts. Subsequently, we used the MDP procedure to compare FA differences in fiber paths related to the abnormalities in major fiber tracts that were identified using AFQ. RESULTS: FA was higher in the bilateral corticospinal tracts (CSTs) in MDD (p’s < 0.002). Secondary analyses using the MDP procedure detected primarily increases in FA in the CST-related fiber paths of the bilateral posterior limbs of the internal capsule, right superior corona radiata, and the left external capsule. CONCLUSIONS: This is the first study to implicate the CST and several related fiber pathways in MDD. These findings suggest important new hypotheses regarding the role of CST abnormalities in MDD, including in relation to explicating CST-related abnormalities to depressive symptoms and RDoC domains and constructs
Attention Drives Synchronization of Alpha and Beta Rhythms between Right Inferior Frontal and Primary Sensory Neocortex
The right inferior frontal cortex (rIFC) is specifically associated with attentional control via the inhibition of behaviorally irrelevant stimuli and motor responses. Similarly, recent evidence has shown that alpha (7–14 Hz) and beta (15–29 Hz) oscillations in primary sensory neocortical areas are enhanced in the representation of non-attended stimuli, leading to the hypothesis that allocation of these rhythms plays an active role in optimal inattention. Here, we tested the hypothesis that selective synchronization between rIFC and primary sensory neocortex occurs in these frequency bands during inattention. We used magnetoencephalography to investigate phase synchrony between primary somatosensory (SI) and rIFC regions during a cued-attention tactile detection task that required suppression of response to uncertain distractor stimuli. Attentional modulation of synchrony between SI and rIFC was found in both the alpha and beta frequency bands. This synchrony manifested as an increase in the alpha-band early after cue between non-attended SI representations and rIFC, and as a subsequent increase in beta-band synchrony closer to stimulus processing. Differences in phase synchrony were not found in several proximal control regions. These results are the first to reveal distinct interactions between primary sensory cortex and rIFC in humans and suggest that synchrony between rIFC and primary sensory representations plays a role in the inhibition of irrelevant sensory stimuli and motor responses.National Institutes of Health (U.S.) (Grant P41RR14075)National Institutes of Health (U.S.) (Grant K25MH072941)National Institutes of Health (U.S.) (Grant K01AT003459)National Institutes of Health (U.S.) (Grant K24AT004095)National Institutes of Health (U.S.) (Grant RO1-NS045130-01)National Institutes of Health (U.S.) (Grant T32GM007484)National Science Foundation (U.S.) (Grant 0316933)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant DGE-1147470
Fusiform Gyrus Dysfunction is Associated with Perceptual Processing Efficiency to Emotional Faces in Adolescent Depression: A Model-Based Approach
While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed
A Framework for the Empirical Investigation of Mindfulness Meditative Development
Millions of people globally have learned mindfulness meditation with the goal of improving health and well-being outcomes in both clinical and non-clinical contexts. An estimated half of these practitioners follow mindfulness teachers’ recommendations to continue regular meditation after completion of initial instruction, but it is unclear whether benefits are strengthened by regular practice and whether harm can occur. Increasing evidence shows a wide range of experiences that can arise with regular mindfulness meditation, from profoundly positive to challenging and potentially harmful. Initial research suggests that complex interactions and temporal sequences may explain these experiential phenomena and their relations to health and well-being. We believe further study of the effects of mindfulness meditation is urgently needed to better understand the benefits and challenges of continued practice after initial instructions. Effects may vary systematically over time due to factors such as initial dosage, accumulation of ongoing practice, developing skill of the meditator, and complex interactions with the subjects’ past experiences and present environment. We propose that framing mindfulness meditation experiences and any associated health and well-being benefits within integrated longitudinal models may be more illuminating than treating them as discrete, unrelated events. We call for ontologically agnostic, collaborative, and interdisciplinary research to study the effects of continued mindfulness meditation and their contexts, advancing the view that practical information found within religious and spiritual contemplative traditions can serve to develop initial theories and scientifically falsifiable hypotheses. Such investigation could inform safer and more effective applications of mindfulness meditation training for improving health and well-being
AI-based dimensional neuroimaging system for characterizing heterogeneity in brain structure and function in major depressive disorder:COORDINATE-MDD consortium design and rationale
BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project
White matter disturbances in major depressive disorder : a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group
Altres ajuts: The ENIGMA-Major Depressive Disorder working group gratefully acknowledges support from the NIH Big Data to Knowledge (BD2K) award (U54 EB020403 to PMT) and NIH grant R01 MH116147 (PMT). LS is supported by an NHMRC MRFF Career Development Fellowship (APP1140764). We wish to acknowledge the patients and control subjects that have particiaped int the study. We thank Rosa Schirmer, Elke Schreiter, Reinhold Borschke and Ines Eidner for image acquisition and data preparation, and Anna Oliynyk for quality checks. We thank Dorothee P. Auer and F. Holsboer for initiation of the RUD study. We wish to acknowledge the patients and control subjects that have particiaped int the study. We thank Rosa Schirmer, Elke Schreiter, Reinhold Borschke and Ines Eidner for image acquisition and data preparation, and Anna Oliynyk for quality checks. We thank Dorothee P. Auer and F. Holsboer for initiation of the RUD study. NESDA: The infrastructure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organisation for Health Research and Development (Zon-Mw, grant number 10-000-1002) and is supported by participating universities (VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen) and mental health care organizations, see www.nesda.nl. M-JvT was supported by a VENI grant (NWO grant number 016.156.077). UCSF: This work was supported by the Brain and Behavior Research Foundation (formerly NARSAD) to TTY; the National Institute of Mental Health (R01MH085734 to TTY; K01MH117442 to TCH) and by the American Foundation for Suicide Prevention (PDF-1-064-13) to TCH. Stanford: This work was supported by NIMH Grants R01MH59259 and R37101495 to IHG. MS is partially supported by an award funded by the Phyllis and Jerome Lyle Rappaport Foundation. Muenster: This work was funded by the German Research Foundation (SFB-TRR58, Projects C09 and Z02 to UD) and the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant Dan3/012/17 to UD). Marburg: This work was funded by the German Research Foundation (DFG, grant FOR2107 DA1151/5-1 and DA1151/5-2 to UD; KI 588/ 14-1, KI 588/14-2 to TK; KR 3822/7-1, KR 3822/7-2 to AK; JA 1890/ 7-1, JA 1890/7-2 to AJ). IMH-MDD: This work was supported by the National Healthcare Group Research Grant (SIG/15012) awarded to KS. Barcelona: This study was funded by two grants of the Fondo de Investigación Sanitaria from the Instituto de Salud Carlos III, by the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM). The author is funded through 'Miguel Servet' research contract (CP16-0020), co-financed by the European Regional Development Fund (ERDF) (2016-2019). QTIM: We thank the twins and singleton siblings who gave generously of their time to participate in the QTIM study. We also thank the many research assistants, radiographers, and IT support staff for data acquisition and DNA sample preparation. This study was funded by White matter disturbances in major depressive disorder: a coordinated analysis across 20 international. . . 1521 the National Institute of Child Health & Human Development (RO1 HD050735); National Institute of Biomedical Imaging and Bioengineering (Award 1U54EB020403-01, Subaward 56929223); National Health and Medical Research Council, Australia (Project Grants 496682, 1009064). NIH ENIGMA-BD2K U54 EB020403 (Thompson); R01 MH117601 (Jahanshad/Schmaal). Magdeburg: M.L. and M.W. are funded by SFB 779. Bipolar Family Study: This study has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013). This paper reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein. This work was also supported by a Wellcome Trust Strategic Award (104036/Z/14/Z). Minnesota Adolescent Depression Study: The study was funded by the National Institute of Mental Health (K23MH090421), the National Alliance for Research on Schizophrenia and Depression, the University of Minnesota Graduate School, the Minnesota Medical Foundation, and the Biotechnology Research Center (P41 RR008079 to the Center for Magnetic Resonance Research), University of Minnesota, and the Deborah E. Powell Center for Women's Health Seed Grant, University of Minnesota. Dublin: This study was supported by Science Foundation Ireland through a Stokes Professorhip grant to TF. MPIP: The MPIP Sample comprises patients included in the Recurrent Unipolar Depression (RUD) Case-Control study at the clinic of the Max Planck Institute of Psychiatry, Munich, German. The RUD study was supported by GlaxoSmithKline.Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD
Multi-Site Benchmark Classification of Major Depressive Disorder Using Machine Learning on Cortical and Subcortical Measures
Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects
- …