Sacchet et al. Biology of Mood & Anxiety Disorders 2014, 4:8
http://www.biolmoodanxietydisord.com/content/4/1/8

‘ CA Biology of
\/} Mood & Anxiety Disorders

RESEARCH Open Access

Structural abnormality of the corticospinal tract in
major depressive disorder

Matthew D Sacchet'?, Gautam Prasad®?, Lara C Foland-Ross?, Shantanu H Joshi®, J Paul Hamilton®,

Paul M Thompson® and lan H Gotlib'?

Abstract

Background: Scientists are beginning to document abnormalities in white matter connectivity in major depressive
disorder (MDD). Recent developments in diffusion-weighted image analyses, including tractography clustering
methods, may yield improved characterization of these white matter abnormalities in MDD. In this study, we acquired
diffusion-weighted imaging data from MDD participants and matched healthy controls. We analyzed these data using
two tractography clustering methods: automated fiber quantification (AFQ) and the maximum density path (MDP)
procedure. We used AFQ to compare fractional anisotropy (FA; an index of water diffusion) in these two groups
across major white matter tracts. Subsequently, we used the MDP procedure to compare FA differences in fiber
paths related to the abnormalities in major fiber tracts that were identified using AFQ.

Results: FA was higher in the bilateral corticospinal tracts (CSTs) in MDD (p's < 0.002). Secondary analyses using
the MDP procedure detected primarily increases in FA in the CST-related fiber paths of the bilateral posterior limbs
of the internal capsule, right superior corona radiata, and the left external capsule.

Conclusions: This is the first study to implicate the CST and several related fiber pathways in MDD. These findings
suggest important new hypotheses regarding the role of CST abnormalities in MDD, including in relation to
explicating CST-related abnormalities to depressive symptoms and RDoC domains and constructs.

Keywords: Major depressive disorder (MDD), Diffusion tensor imaging (DTI), Tractography, Clustering, Automated
fiber quantification (AFQ), Maximum density path (MDP), Corticospinal tract (CST), Fractional anisotropy (FA)

Background
Major depressive disorder (MDD) is the most common
psychiatric disorder in the United States [1], accounting
for approximately half of disability-adjusted life years
worldwide [2], with major economic and personal costs
[3]. MDD involves a wide range of symptoms, including
most prominently negative affect and anhedonia (loss of
pleasure), as well as difficulties in psychomotor function-
ing, sleep, and weight changes. If we could better under-
stand the neural basis of MDD, we may be able to better
prevent and treat this debilitating disorder.

Across different areas of neuroscience, there has been
growing interest in delineating brain networks, in con-
trast to examining specific brain regions in isolation.
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Networks of brain regions have been increasingly impli-
cated in depressive pathology, underscoring the need
to understand depression-related anomalies in the con-
nections among these regions [4-6]. In this context,
diffusion-weighted imaging can assess diffusion proper-
ties of white matter and can be used to infer brain con-
nectivity. Using diffusion tensor imaging (DTI), water
diffusion can be quantified using fractional anisotropy
(FA), which measures the degree of directional prefer-
ence in water diffusion. FA, the most commonly used
diffusion metric, is influenced by intra-voxel orientation
dispersion, axonal myelination and packing density,
membrane permeability, the number of axons, and par-
tial volume effects [7]. Moreover, tractography algo-
rithms can use diffusion tensor information to estimate
the location and direction of fiber tracts. DTI has been
used to characterize abnormal white matter diffusion
properties in a range of diseases, including psychiatric
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disorders involving psychosis and disturbances in mood
and attention [4,5,8,9].

To our knowledge, there have been three reviews doc-
umenting diffusion abnormalities in MDD [4-6]. Across
these three reviews, there has been considerable discrep-
ancy in the direction and location of effects of white
matter abnormalities in MDD. This may be because of
significant heterogeneity in participant samples (e.g., half
of the studies included in one review assessed elderly in-
dividuals [5]), meta-analytic methods (e.g., qualitative
[5], signed differential mapping (SDM) [6], and activa-
tion likelihood estimation (ALE) [4]), individual study
analysis techniques (e.g., tractography, voxel-based ana-
lysis (VBA), or tract-based spatial statistics (TBSS)), and/
or study inclusion criteria (e.g., only analyzing decreases
in FA [6]). Thus, our current understanding of white mat-
ter pathology in MDD is based on relatively few studies
that, themselves, incorporate heterogeneous methodo-
logical approaches. Most studies of diffusion in MDD have
not assessed tractography, but instead examined FA or
other diffusion measures in specific regions of interest
(ROIs), or, globally, using VBA or TBSS [4-6]. Tractogra-
phy uses directional information from the diffusion data
to extract diffusion properties from specific fiber tracts,
and it may offer greater power to detect disease-related
abnormalities than do VBA and TBSS [10].

Few studies have used tractography-based methods to
characterize white matter connectivity in MDD. Zhang
et al. first used tractography to identify the cingulum
bundle and uncinate fasciculi and then estimated diffu-
sion properties in these fiber tracts. These investigators
found that FA was lower and mean diffusivity was higher
in the right uncinate fasciculus in depressed individuals
relative to nondepressed controls [10]. In a second
study, Zhang and colleagues found MDD-related reduc-
tions in FA in tractography-identified anterior limb of
the internal capsule, an important component of the
cortico-striatal-pallidal-thalamic (CSPT) circuit [11]. Fi-
nally, in a connectomics framework, tractography and
graph theory have been used to explicate large-scale
network abnormalities in depression [12,13].

Whole-brain tractography commonly includes tens of
thousands of fibers; consequently, findings using this
technique in isolation can be difficult to interpret. To
better understand such massive amounts of data, whole-
brain tractography is often summarized. One data reduc-
tion method identifies key fiber tracts by requiring
manual tracing of an ROI which is followed by algorith-
mic assessment of the fibers that pass through it (as in
[10,11]). This manual identification of ROIs is time con-
suming, however, and limits the number of fascicles that
can be assessed. In addition, manual tracing methods
can introduce investigator bias during selection and tra-
cing of ROIs. In contrast, clustering methods permit the
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automated, unbiased summarization of fiber tract infor-
mation, by using anatomical and DTI information to
locate important fiber tracts. Automated fiber quantifica-
tion (AFQ) [14] and the maximum density path (MDP)
[15] approach are two such clustering methods. Briefly,
AFQ identifies important white matter tracts by asses-
sing sets of fibers that intersect pairs of waypoint ROIs.
Similarly, the MDP procedure uses a graph search
method in a set of white matter ROIs to identify abnor-
malities in fiber paths. MDPs are smaller and more nu-
merous than the AFQ-identified tracts and provide
complementary anatomical information.

Given the likely importance of anomalies in white
matter connectivity in MDD, the inconsistency in the
literature concerning diffusion-related findings in this
disorder, and the recent development of sensitive, auto-
mated, tractography clustering methods, the present
study was designed to use the AFQ and MDP tractogra-
phy clustering methods to automatically characterize
properties of white matter diffusion in MDD. First, we
used AFQ to identify depression-related anomalies in FA
in 18 major white matter paths. MDPs allow for add-
itional and complementary information relative to tract
properties derived by AFQ, given their small size, large
number, and association with major white matter tracts.
After identifying abnormal white matter pathways using
AFQ, we conducted secondary analyses in a subset of
MDPs that were associated with these specific paths. In
addition, given evidence that age of onset of depression
and severity of disorder are related to abnormalities in
white matter properties [6,16], we assessed the relations
between these two variables as well as the level of global
functioning and diffusion properties of abnormal white
matter paths.

Thus, we used information from tractography and
took advantage of the lower bias and higher efficiency of
two automated clustering methods to study major white
matter paths in MDD. We hypothesized that FA would
be lower in depressed individuals in the uncinate fascic-
ulus, which links regions associated with emotion pro-
cessing (e.g., hippocampus, amygdala) with regions
implicated in cognitive control (e.g., prefrontal cortex).

Methods

Participants

Participants were 14 women diagnosed with MDD and
18 healthy, age-matched, female controls (CTLs) 18-55
years of age. The Structured Clinical Interview for
DSM-IV-TR Axis I (SCID-I) [17] was used to establish
a psychiatric diagnosis of MDD based on DSM-IV-TR
criteria. To qualify for study entry, individuals in the CTL
group could not have met criteria for any past or current
DSM-IV-TR Axis I disorder. Exclusion criteria for both
MDD and CTL participants included current alcohol or
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substance abuse or dependence and head trauma resulting
in loss of consciousness greater than 5 min. During the
SCID-], to assess age of onset of depression, depressed
participants were asked at what age they first experienced
a depressive episode. A trained interviewer also completed
the Global Assessment of Functioning (GAF) scale [18].
This scale indexes, from 1 to 100 (sickest to healthiest),
the level of the participants’ social, occupational, and psy-
chological functioning. Severity of depression was assessed
with the Beck Depression Inventory-II (BDI-II [19]). The
Stanford University Institutional Review Board approved
the study and informed consent was collected from each
participant.

MRI data acquisition

Whole-brain diffusion-weighted and high-resolution T1-
weighted images were collected using a Discovery MR750
3.0 T MR system (GE Medical Systems, Milwaukee, W1,
USA), housed at the Stanford Center for Neurobiological
Imaging. The T1-weighted images were used for ana-
tomical registration (spoiled gradient echo (SPGR) pulse
sequence; repetition time (TR)=6,240 ms; echo time
(TE) = 2.34 ms; flip angle = 12° resolution = 0.9 mm iso-
tropic; 186 slices; scan duration=5 min 15 s). The
diffusion-weighted scan was a single-shot, dual-spin-echo,
echo-planar imaging sequence (96 unique directions;
b=2,000 s/mm?%* TR =8,500 ms; TE =93.6 ms; reso-
lution = 2 mm isotropic; 64 slices; scan duration = 15 min
1 s). Nine non-diffusion-weighted (b =0 s/mm?) volumes
were additionally collected for anatomical localization
and registration purposes.

AFQ procedure

AFQ systematically uses whole-brain tractography methods
to characterize major white matter fiber tracts. Here we
briefly describe the AFQ procedure (see Additional file 1
for more detail). First, diffusion data were preprocessed,
including motion correction, data alignment, re-
sampling, and trilinear interpolation [20]. Tensors were
then fit at each voxel using a robust tensor fitting
method [21], and FA was computed as the normalized
standard deviation of the tensor’s eigenvalues. FA
ranges from O (perfectly isotropic) to 1 (perfectly aniso-
tropic diffusion). Following this, tractography was
estimated using a deterministic streamline tracing algo-
rithm [22,23]. Then, waypoint ROIs labeled on the MNI
template were warped into participant-specific diffusion
space, and fibers intersecting these ROIs were identi-
fied. After a series of fiber cleaning and tract refinement
steps, the central portion of each fiber tract was located
and diffusion metrics were computed along this core,
resulting in a “tract profile”. These tract profiles permit
the systematic and unbiased assessment of group differ-
ences in diffusion metrics, FA in this study. After

Page 3 of 10

identifying tract profiles, we computed the mean FA
along each white matter tract.

MDP procedure

The MDP approach allows for the automated assess-
ment of compact and localized white matter paths on an
individual-participant basis [15] (see Additional file 1 for
more detail). Because MDPs are smaller, more nume-
rous, and associated with major white matter tracts (i.e.,
they are located in major tracts or in areas to which
these tracts project), they offer additional information to
that obtained using AFQ. We identified MDPs in 50
white matter regions described in the Johns Hopkins
University white matter atlas, resulting in a total of 67
MDPs (several regions have more than one MDP). To
implement this procedure, we first corrected the diffu-
sion data for eddy current and motion effects; next, we
estimated whole-brain tractography using an optimized
global probabilistic tractography method [24]. Then,
from the whole-brain tractography computed using the
global method, we created fiber density images for each
white matter ROI by identifying fibers that intersect
with the ROI (AFQ-identified fibers intersected pairs of
ROIs). The next step employed graph theoretical ana-
lysis. Specifically, fiber density graphs were created with
nodes as voxel locations and edges as density information.
Seed points identified in the white matter atlas were then
warped into each fiber density graph image. Using an
optimized grid search method to find the path of highest
density [25], MDPs were identified between each pair of
seed points. The resulting paths were compact re-
presentations of the given tract’s scale/size, location, and
geometry/shape. Finally, paths were registered spatially
across individuals using a geodesic curve registration pro-
cedure [26,27], allowing us to conduct between-group
comparisons of FA in a point-wise manner.

Analysis plan and statistical analysis
In the first stage of analysis, we used two-sample ¢-tests
to compare the 18 AFQ-identified fiber tract core mean
FA values for the MDD and CTL groups. To correct for
false positive inflation as a result of multiple compari-
sons, we implemented a false discovery rate (FDR) pro-
cedure (g=0.05) [28]. This analysis identified major
fiber bundles in which there were depression-related
abnormalities. Using Pearson linear partial correlation
(controlling for age), we assessed the correlations be-
tween identified abnormal fiber tracts and age of onset
of depression, severity of depression (BDI-II scores),
and level of global functioning (GAF scores) in the
MDD group.

Second, we identified MDPs that were associated (i.e.,
overlapping, outside of the AFQ fiber tract but in projec-
tion fibers, or spatially proximal) with the abnormal fiber
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tracts that were identified using AFQ. Spatially proximal
MDPs were included because AFQ incorporates weighted
FA values into the estimates of major fiber tract FA
from fibers that are not in the fiber tract core; thus, pro-
ximal MDPs may exhibit relevant FA abnormalities. The
step-wise analysis procedure was implemented because
MDPs are neuroanatomically associated with the AFQ
fiber tracts, and are smaller and more numerous, therefore
allowing for additional but complementary information to
that provided by the AFQ-identified major fiber tracts.
We conducted two-sample ¢-tests to assess point-wise dif-
ferences between the MDD and CTL groups, using FDR
to correct for multiple comparisons across points for each
analyzed MDP (i.e., the subset of the 67 MDPs that were
included for further analysis given their relation to the ab-
normal fiber tracts identified using AFQ).

Results

Demographic and clinical characteristics

Means and standard deviations for demographic and
clinical variables for the 14 depressed and 18 control
female participants are presented in Table 1. The two
groups did not differ in age (£(30) =-1.53, p>0.10),
handedness ()f(l) =0.14, p > 0.10), or level of education
achieved (#(30) =-1.34, p>0.10). As expected, the de-
pressed participants had significantly higher BDI-II
scores than did the never-depressed controls. Half of the
participants in the depressed group met criteria for at
least one anxiety disorder, and three depressed partici-
pants were currently taking psychotropic medications
(see Table 2).

AFQ

Across the entire sample, AFQ was unable to characterize 5
of the 576 fiber tracts (i.e., N x [number of fiber tracks] =
32 x 18): the callosum forceps major for three participants
and the callosum forceps minor for two participants.
These participants were excluded from analyses involving
these particular fiber tracts. The failure of AFQ to identify
these fibers may be a result of crossing fibers, noise in the

Table 1 Participant demographic and clinical characteristics
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data, abnormal anatomy that caused problems for auto-
mated segmentation, or small fiber tracks for which it is
difficult to compute statistics. Of the 18 analyzed fiber
groups (Table 3), two distinguished MDD from CTL par-
ticipants after correcting for multiple comparisons: the left
corticospinal tract (CST) (£(30) = 3.45, p < 0.002) and the
right CST (£(30) = 3.79, p < 0.001) (Table 4, Figure 1). Both
CSTs were characterized by greater FA in the MDD than
in the CTL group (Table 4). As an exploratory analysis, we
divided the group of MDD participants into two sub-
groups based on the presence or absence of comorbid
anxiety; these two subgroups did not differ in FA for either
the left or the right CST (p’s > 0.10). In addition, the group
differences in CST were unchanged after removing the
three MDD participants who were taking psychotropic
medications (left CST: #(27) = 3.45, p <0.002; right CST:
1(27) =3.11, p<0.005). Finally, in the MDD group, we
correlated age of onset and severity of depression, and
level of global functioning, with mean FA individually for
both left and right CST. No significant correlations were
obtained (p > 0.10).

MDPs

For the second stage of the analysis plan, we identified
MDPs associated with the AFQ-identified CST. This
resulted in the identification of 24 unique MDPs from
seven white matter ROIs (from a total of 50). The 24
MDPs (12 in each hemisphere) comprised 35.8% of
the total set of 67 MDPs (Table 5). These MDPs over-
lap, are along the same white matter bundle, or are
spatially proximal to the CST projections identified in
the AFQ analysis.

We conducted two-sample t-tests on a point-by-point
basis along each of the identified MDPs. After correcting
for multiple comparisons by using FDR independently
for each MDP, the MDD and CTL groups exhibited
point-wise differences in four MDPs: the left posterior
limb of the internal capsule, the right posterior limb of
the internal capsule, the right superior corona radiata,
and the left external capsule (Table 6, Figure 2). Because

CTL (N=18) MDD (N =14) p value
Age in years (M| SD | min/max) 304 102 18.9/52.1 356 84 22.8/485 >0.10P
Education level® (M | SD | min/max) 6.6 4/8 7.2 1.1 4/8 >0.10
BDHI (M | SD | min/max) 2.2 0/1 317 6.6 22/43 <0.001°
Global Assessment of Functioning (M | SD | min/max) 87.8 75/99 53.0 6.6 35/60 <0.001°
Age of onset (M | SD | min/max) NA 16.3 6.8 3/26 NA
Handedness (right | left) 16 2 13 1 >0.10¢

BDI-Il Beck Depression Inventory-Il, GAF Global Assessment of Functioning, M mean, SD standard deviation, MDD major depressive disorder, CTL control.
Level of education was assigned as follows: having finished 1) elementary school, 2) junior high school, 3) high school, 4) some college, 5) technical school, 6)

junior college, 7) 4-year college, or 8) graduate or professional education.
PComputed using two-sample t-test.
“Computed using chi-square test.
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Table 2 Current comorbid diagnoses and psychotropic
medications of the MDD participants
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Table 4 Group differences in FA in AFQ-identified fiber
tracts

Participants % of total
Comorbidities 7 50
Social phobia 4 286
General anxiety disorder 3 214
Panic disorder 2 14.3
Post-traumatic stress disorder 2 14.3
Specific phobia 2 14.3
Bulimia nervosa 1 7.1
Psychiatric medications 3 214
Aripiprazole 2 14.3
Duloxetine 1 7.1
Gabapentin 1 7.1
Quetiapine 1 7.1
Sertraline 1 7.1
Venlafaxine 1 7.1

MDD major depressive disorder.

each of the four MDPs was located in a unique region,
and because each of these regions included two analyzed
MDPs, only one of the two MDPs identified for each im-
plicated white matter region yielded point-wise group
differences after FDR correction. Of the identified points
that differed between groups (27 total across the four
MDPs), all except three of the six points of the left exter-
nal capsule were characterized by greater FA in the
MDD than in the CTL group.

Discussion

The literature examining white matter abnormalities in
MDD is methodologically varied and sparse and has
yielded inconsistent findings. In this context, the current
study was designed to capitalize on the improved de-
tection power of tractography, the reduced bias of

Table 3 AFQ-identified fiber tracts

Laterality AFQ fiber tracts

L/R Thalamic radiation

L/R Corticospinal

L/R Cingulum cingulate

NA Callosum forceps major
NA Callosum forceps minor
L/R IFOF

L/R ILF

L/R SLF

L/R Uncinate

L/R Arcuate

AFQ automated fiber quantification, L left, R right, IFOF inferior fronto-occipital
fasciculus, ILF inferior longitudinal fasciculus, SLF superior longitudinal
fasciculus.

AFQ fiber group CTLFA MDD FA p value
M SD M sD

Left corticospinal tract 0620 0020 0644 0.020 <0.002

Right corticospinal tract 0614 0021 0639 0015 <0.001

p values were computed using two-sample t-tests and a false discovery rate
(FDR) procedure was used to account for false positives as a result of multiple
comparisons. See Figure 1 for corticospinal tract (CST) renderings and graphical
display of differences.

AFQ automated fiber quantification, MDD major depressive disorder, CTL control,
FA fractional anisotropy, M mean, SD standard deviation.

automated clustering methods, and more systematic and
data-driven analysis, to assess abnormalities in white
matter in MDD and begin to yield a more systematic
and reliable connectomics of depression. Indeed, this is
the first study to use automated tractography clustering
to characterize white matter in depression. Our analyses
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Figure 1 AFQ corticospinal tracts. Corticospinal tracts (CSTs)
rendered for an example subject. Three hundred fibers were
rendered for each tract. The left CST is colored teal and the right
CST green. Waypoint regions of interest (ROIs) are depicted in red.
Fractional anisotropy (FA) computed for the fiber tract core,
between the waypoint ROls, was meaned and compared between
groups. (A) Bilateral CSTs viewed posteriorly with a T1-weighted
coronal slice at the anterior commissure. (B) Left CST and (C) right
CST viewed laterally with a mid-sagittal T1-weighted slice. (D) Group
differences in mean CSTs. Asterisks indicate statistical significance
from two-sample t-tests between groups. Error bars represent
standard error of the mean (SEM). See Table 4 for group means and
standard deviations. AFQ automated fiber quantification, CTL control

group, MDD depressed group.
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Table 5 MDP locations

White matter region

MDPs per hemisphere

Anterior limb of the internal capsule 2
Posterior limb of the internal capsule 2
External capsule 1

Corticospinal tract 1

Anterior corona radiata 2
Superior corona radiata 2
Posterior corona radiata 2

White matter regions of interest from the Johns Hopkins University Atlas and
the number of MDPs per region, per hemisphere. A total of 24 MDPs

were assessed.

MDP maximum density path.

included fiber tracts that have been previously studied in
this disorder, in addition to several tracts that have not
before been examined.

Using AFQ [14], we found that MDD was character-
ized by abnormalities in FA in the bilateral corticospinal
tracts. We then used the MDP procedure [15] to further
probe localized abnormalities that were associated with
these group differences. This analysis revealed, for the
first time, increased FA in the bilateral posterior limbs of
the internal capsule, right superior corona radiata, and
the left external capsule in MDD.

Previous studies have primarily documented reduced
FA associated with MDD. In contrast, the current results
include almost exclusively increased FA in participants
diagnosed with this disorder. This discrepancy may be a
result of the small number of studies considered in the
previous reviews (12 studies [5], 11 studies [4], 7 studies
[6]). In addition, Liao et al. only analyzed data indicating
increases in FA in MDD [4]; the two quantitative reviews
[4,6] excluded tractography studies; and the third review
[5] included only one tractography study in the discus-
sion of MDD. Because tractography incorporates direc-
tionality information that is used to identify important
white matter pathways, it may allow for greater detec-
tion power than do whole-brain voxel-wise techniques
(e.g., VBA or TBSS) and, thus, may explain why previous
research did not report increases in FA in CST in MDD.

Table 6 Group FA differences in MDPs

White matter region Total points Group % of
in MDP differences  points

Left posterior limb of the 16 6 375

internal capsule

Right posterior limb of the 17 14 824

internal capsule

Right superior corona radiata 17 1 59

Left external capsule 48 6 12.5

Group differences were assessed using two-sample t-tests, and a false discovery
rate (FDR) procedure was used to account for false positives as a result of
multiple comparisons.

FA fractional anisotropy, MDP maximum density path.
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It is also possible that the automated clustering methods
that we implemented vyield greater spatial specificity
than do earlier methods, and that decreases in FA in
MDD that were previously identified using VBA and
TBSS were, in fact, inaccurately reported to be localized
to major fiber tracts.

It is important to also note that other investigators
have reported depression-related increases in FA. For ex-
ample, Blood et al. found that the ventral tegmental area
was associated with greater FA in MDD than in control
participants [29]. Moreover, several studies have identi-
fied regions of increased FA in bipolar disorder (BD)
[5] in areas of the corpus callosum [30] and the frontal
lobe [31], including the uncinate fasciculus, optic radi-
ation, and anterior thalamic radiation [32]. Given re-
cent interest in examining transdiagnostic factors in
the proposed NIMH RDoC framework, it will be im-
portant in future research to investigate how tract-
specific FA may correspond to signs and symptoms of
disorders of emotion and mood with respect to specific
RDoC domains and constructs.

Previous research has suggested that increased FA of
the CSTs is related to decreases in FA of the superior
longitudinal fasciculi (SLE). Specifically, Douaud et al
reported increases in CST FA in individuals with mild
cognitive impairment and Alzheimer’s disease compared
to healthy controls; moreover, using a method of quanti-
tative crossing fiber tractography, Douaud et al. found
that the increases in CST FA were associated with
reduced FA of SLF association fibers in a crossing fiber
region at the level of the centrum semiovale [33]. Al-
though these findings raise the intriguing possibility that
MDD-related increases in FA of the CST are related to
selective sparing of this tract with concurrent abnormal-
ity in the SLE, we did not find SLF abnormalities in the
current study. Future research using imaging and tracto-
graphy methods that allow for greater resolution of cross-
ing fibers may permit a better assessment of whether
increases in CST FA in MDD are related to abnormalities
in regions of crossing fibers.

Given the role of the CSTs in motor processes, it is
possible that our findings of anomalous FA in these
structures are related to psychomotor symptoms that
often characterize MDD [34]. More specifically, motor
retardation and agitation, criterion symptoms of MDD,
may result from aberrations in white matter micro-
structure connecting the brainstem to motoric regions
of cortical gray matter [35]. The current findings offer a
foundation from which future research might explore
this hypothesis. Importantly, although the white matter
of primate CSTs is understood to arise primarily from
the primary motor cortex, projections from the somato-
sensory, cingulate, and insular cortices are also repre-
sented [35]. Thus, the CST is likely to be involved in a
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Figure 2 Group differences in MDPs. (A) Rendering of analyzed MDPs associated with the corticospinal tract (CST). A.i Superior view. Aiii Right
lateral view. Aiii Left lateral view. MDPs that exhibited point-wise differences (right superior corona radiata, right posterior limb of the internal
capsule, left posterior limb of the internal capsule, left external capsule) are labeled and colored magenta. (B) Rendering of analyzed MDPs with
point-wise p values computed from two-sample t-tests. Red indicates lower p values and greater significance. (C) Rendering of analyzed MDPs
with FDR-corrected point-wise statistical tests. Red indicates significant test. MDP maximum density path, FDR false discovery rate, R right, L left,

variety of functions and thus may be related to a range
of depression-related functioning (e.g., somatosensory,
affective, and cognitive). Future research, therefore, may
profitably assess the relations of these important symptom
domains with CST diffusion properties in MDD. More-
over, given the varied projection profile of the CST,
future research should assess relations between abnormal-
ities in CST FA and gray matter properties (e.g., volume)
in this disorder.

Although controversial, findings of abnormal fronto-
striatal networks in MDD have led to the formulation
that this disorder is a “disconnection syndrome” charac-
terized by reduced connectivity between cortical and
subcortical brain regions [4,5,36]. Evidence for this for-
mulation includes observations that frontal white matter
FA is reduced in MDD [37] and is correlated with remis-
sion from depression [38]. The current findings provide
evidence that MDD may be characterized by abnormal-
ities in connectivity between subcortical and brainstem
structures and cortical gray matter regions. In future
studies, investigators might use the AFQ and MDP proce-
dures to examine the viability of the disconnection syn-
drome formulation more systematically, given that these
procedures yield increased spatial specificity in neuro-
anatomical abnormalities associated with MDD.

The uncinate fasciculus and thalamic radiation are the
most commonly studied fiber tracts in mood disorders
[5]; indeed, we had hypothesized that we would find ab-
normalities of the uncinate fasciculus in MDD. The
interest in these white matter tracts is due primarily to
their potential involvement in abnormal cognitive con-
trol over emotion processing. Specifically, the uncinate
fasciculus includes connections between medial tem-
poral lobe regions associated with emotion processing
(e.g., the hippocampi and amygdala) and the frontal cor-
tex (involved in cognitive control); similarly, the white
matter of the thalamic radiation links the frontal cortex
with the thalamus (potentially a key connection in the
disconnection syndrome formulation). Notably, we did
not find abnormalities in these two tracts. This may be
due in part to the location of the default AFQ waypoint
ROIs, which are placed to identify the fiber tract cores
and, thus, limit the assessment of variability more pro-
ximal to cortex.

The current results indicate that AFQ and MDPs are
complementary techniques for the quantification and

characterization of white matter paths in psychiatric
populations and represent an important step towards
the automated and efficient characterization of psycho-
pathology, as demonstrated here in MDD. Given the
sensitivity and automated nature of these methods, they
may prove useful in identifying and characterizing bio-
markers that can facilitate efforts to prevent and treat
psychiatric disorders.

Despite the strengths of these procedures, we should
note three limitations of the present study. First, the
sample size in the current study was relatively small;
thus, it is possible that the analyses are underpowered to
find reductions in FA that have been previously re-
ported, or significant relations between CST FA and age
of onset or severity of depression, or level of global func-
tioning. Second, our sample of depressed participants
was heterogeneous with respect to the presence of
anxiety comorbidities and medication use. We did not
find differences in CST FA between the comorbid and
non-comorbid participants in the MDD sample, nor did
the effects we report appear to be determined by psycho-
tropic medication use in a small subset of our depressed
sample. Thus, it seems that these factors did not confound
our results. Third, as with all FA-related results, the
biological basis of the observed abnormality is unclear,
as many factors can influence this metric: the level of
orientation dispersion, myelination, numbers of axons,
membrane permeability, axonal packing density, geometric
properties of the tract, partial volume effects, and influences
from branching, merging, or crossing fibers [7].

Conclusions

Using tractography clustering methods, we identified
abnormalities in major white matter paths in MDD,
specifically in the CSTs and several related pathways, in-
cluding bilateral posterior limb of the internal capsules,
right superior corona radiata, and left external capsule.
These are the first results to implicate abnormality of
the CST and related pathways in MDD. These findings
highlight important future research directions, including
increasing our understanding of CST abnormalities in
the context of depressive symptoms and in relation to
RDoC domains and constructs. Finally, the current study
demonstrates that tractography clustering techniques
can be used to increase our understanding of white
matter abnormalities in MDD.
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