9 research outputs found

    Activity-Dependent Changes in Extracellular Ca2+ and K+ Reveal Pacemakers in the Spinal Locomotor-Related Network

    Get PDF
    SummaryChanges in the extracellular ionic concentrations occur as a natural consequence of firing activity in large populations of neurons. The extent to which these changes alter the properties of individual neurons and the operation of neuronal networks remains unknown. Here, we show that the locomotor-like activity in the isolated neonatal rodent spinal cord reduces the extracellular calcium ([Ca2+]o) to 0.9 mM and increases the extracellular potassium ([K+]o) to 6 mM. Such changes in [Ca2+]o and [K+]o trigger pacemaker activities in interneurons considered to be part of the locomotor network. Experimental data and a modeling study show that the emergence of pacemaker properties critically involves a [Ca2+]o-dependent activation of the persistent sodium current (INaP). These results support a concept for locomotor rhythm generation in which INaP-dependent pacemaker properties in spinal interneurons are switched on and tuned by activity-dependent changes in [Ca2+]o and [K+]o

    Persistent sodium current in the locomotor network of new born rats : its contribution to pacemaker properties and locomotor rhythm

    No full text
    La locomotion se définit par des mouvements répétés et coordonnés des membres droits et gauches et des muscles antagonistes d’une même articulation. L’activité locomotrice des rongeurs est générée par des groupes de neurones localisés dans la partie antérieure de l’élargissement lombaire; ce réseau de cellules est appelé Central Pattern Generator (CPG). Au cours de cette thèse, les études entreprises chez le rat nouveau-né ont eu pour but d’étudier les mécanismes cellulaires impliqués dans la genèse du rythme locomoteur. Le courant sodique persistant (INaP) joue un rôle important dans la genèse d’activités rythmiques de plusieurs structures supraspinales et notamment celles impliquées dans la mastication et la respiration. Curieusement, son existence et son implication dans la genèse d’activités rythmiques dans les structures du CPG locomoteur spinal n’ont jamais été abordées. A l’aide d’études électrophysiologiques, la thèse démontre l’existence de INaP et le caractérise pour la première fois au sein du CPG locomoteur. Ce courant est indispensable à la genèse du rythme locomoteur et joue un rôle fondamental dans l’émergence d’activités pacemakers au sein du CPG. Ces activités pacemakers émergent dans un contexte physiologique où des fluctuations dans la composition ionique du milieu extracellulaire interviennent au cours d’une activité locomotrice. L’ensemble de ces données suggère que le « cœur » du générateur de rythme pourrait être composé d’interneurones présentant une activité pacemaker dépendante de INaP dont la modulation pourrait être un élément fondamental à la fois dans le déclenchement et la modulation de l’activité locomotrice.Identification of the cellular mechanisms underlying the generation of the locomotor rhythm is of longstanding interest to physiologists. Hindlimb locomotor movements are generated by lumbar neuronal networks, referred to as central pattern generators (CPG). Although rhythm generation mechanisms within the CNS can vary, the activation of a subthreshold depolarizing conductance is always needed to start the firing of individual neurons. Among various subthreshold membrane conductances, the persistent sodium current (INaP) is involved in rhythmic activity of numerous supraspinal neurons such as those involved in the generation of masticatory and respiratory rhythm. The thesis was aimed at identifying and characterizing INaP in the neonatal rodent locomotor CPG, determining its importance in shaping neuronal firing properties and its role in the operation of the locomotor circuitry. Using electrophysiological studies the thesis has characterized INaP for the first time in the locomotor CPG. This current is essential to the generation of the locomotor rhythm and plays a fundamental role in the emergence of pacemaker activity within the CPG. These pacemaker activities emerge in a physiological context in which fluctuations in the ionic composition of the extracellular environment occur during locomotion. This study provides evidence that INaP generates pacemaker activities in CPG interneurons and new insights into the operation of the locomotor network with a critical implication of INaP in stabilizing the locomotor pattern

    Le courant sodique persistant dans le réseau locomoteur du rat nouveau-né (sa contribution dans l'émergence des activités pacemakers et du rythme locomoteur)

    No full text
    La locomotion se définit par des mouvements répétés et coordonnés des membres droits et gauches et des muscles antagonistes d une même articulation. L activité locomotrice des rongeurs est générée par des groupes de neurones localisés dans la partie antérieure de l élargissement lombaire; ce réseau de cellules est appelé Central Pattern Generator (CPG). Au cours de cette thèse, les études entreprises chez le rat nouveau-né ont eu pour but d étudier les mécanismes cellulaires impliqués dans la genèse du rythme locomoteur. Le courant sodique persistant (INaP) joue un rôle important dans la genèse d activités rythmiques de plusieurs structures supraspinales et notamment celles impliquées dans la mastication et la respiration. Curieusement, son existence et son implication dans la genèse d activités rythmiques dans les structures du CPG locomoteur spinal n ont jamais été abordées. A l aide d études électrophysiologiques, la thèse démontre l existence de INaP et le caractérise pour la première fois au sein du CPG locomoteur. Ce courant est indispensable à la genèse du rythme locomoteur et joue un rôle fondamental dans l émergence d activités pacemakers au sein du CPG. Ces activités pacemakers émergent dans un contexte physiologique où des fluctuations dans la composition ionique du milieu extracellulaire interviennent au cours d une activité locomotrice. L ensemble de ces données suggère que le cœur du générateur de rythme pourrait être composé d interneurones présentant une activité pacemaker dépendante de INaP dont la modulation pourrait être un élément fondamental à la fois dans le déclenchement et la modulation de l activité locomotrice.Identification of the cellular mechanisms underlying the generation of the locomotor rhythm is of longstanding interest to physiologists. Hindlimb locomotor movements are generated by lumbar neuronal networks, referred to as central pattern generators (CPG). Although rhythm generation mechanisms within the CNS can vary, the activation of a subthreshold depolarizing conductance is always needed to start the firing of individual neurons. Among various subthreshold membrane conductances, the persistent sodium current (INaP) is involved in rhythmic activity of numerous supraspinal neurons such as those involved in the generation of masticatory and respiratory rhythm. The thesis was aimed at identifying and characterizing INaP in the neonatal rodent locomotor CPG, determining its importance in shaping neuronal firing properties and its role in the operation of the locomotor circuitry. Using electrophysiological studies the thesis has characterized INaP for the first time in the locomotor CPG. This current is essential to the generation of the locomotor rhythm and plays a fundamental role in the emergence of pacemaker activity within the CPG. These pacemaker activities emerge in a physiological context in which fluctuations in the ionic composition of the extracellular environment occur during locomotion. This study provides evidence that INaP generates pacemaker activities in CPG interneurons and new insights into the operation of the locomotor network with a critical implication of INaP in stabilizing the locomotor pattern.AIX-MARSEILLE2-Bib.electronique (130559901) / SudocSudocFranceF

    A spike-timing-dependent plasticity rule for dendritic spines

    No full text
    The structural organization of excitatory inputs supporting spike-timing-dependent plasticity (STDP) in dendritic spines remains unknown. Using a spine STDP protocol, the authors uncover the STDP rules for single, clustered and distributed dendritic spines in the basal dendrites of layer 5 pyramidal neurons in juvenile mice

    Importance of chloride homeostasis in the operation of rhythmic motor networks

    No full text
    International audienceGABA and glycine are classically called "inhibitory" amino acids, despite the fact that their action can rapidly switch from inhibition to excitation and vice versa. The postsynaptic action depends on the intracellular concentration of chloride ions ([Cl À ] i), which is regulated by proteins in the plasma membrane: the K þ-Cl À cotransporter KCC2 and the Na þ-K þ-Cl À cotransporter NKCC1, which extrude and intrude Cl À ions, respectively. A high [Cl À ] i leads to a depolarizing (excitatory) action of GABA and glycine, as observed in mature dorsal root ganglion neurons and in motoneurons both early during development and in several pathological conditions, such as following spinal cord injury. Here, we review some recent data regarding chloride homeostasis in the spinal cord and its contribution to network operation involved in locomotion
    corecore