30 research outputs found

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    RNA binding to the untransformed glucocorticoid receptor. Sensitivity to substrate-specific ribonucleases and characterization of a ribonucleic acid associated with the purified receptor.

    No full text
    The cytosolic untransformed molybdate-stabilized glucocorticoid-receptor complex from rat liver was eluted as a heterogenous peak containing two components with Stokes radii (Rs) of 8.3 nm and 7.1 nm when analyzed by size-exclusion HPLC even in the absence of molybdate. In contrast, the highly purified glucocorticoid receptor yielded a sharp symmetrical peak of Rs = 7.1 nm. We demonstrate that the 7.1-nm component could not result from a proteolytic degradation of the 8.3-nm receptor form. The same receptor heterogeneity was observed in thymus cytosol which contains less proteases than liver. After labeling with [3H]dexamethasone 21-mesylate and SDS/PAGE the same 94-kDa receptor band was revealed in both the 8.3-nm and 7.1-nm forms. Immunoblotting experiments showed that both the 94-kDa hormone-binding subunit and the 90-kDa heat-shock protein were present in the two different receptor forms. The 8.3-nm receptor form was converted to the 7.1-nm receptor form after treatment by ribonuclease A in the presence of molybdate and this effect was dose-dependent, being completely prevented by placental ribonuclease inhibitor (RNasin). In contrast, in the presence of molybdate, the 7.1-nm receptor form was ribonuclease-insensitive. Treatment of cytosol with RNase A in the absence of molybdate, partially shifted the untransformed receptor towards the 5.2-nm transformed receptor form. This effect was abolished by placental ribonuclease inhibitor. RNase S protein, an enzymatically inactive proteolytic fragment of RNase A, or S1 nuclease, which is specific for single-stranded nucleic acids, were ineffective when used instead of RNase A. In contrast, cobra venom endonuclease, which preferentially attacks double-stranded regions of small RNAs, caused a complete conversion of the 7-8-nm untransformed receptor to the 5.2-nm transformed receptor form. These results were not observed in the presence of molybdate. Addition of RNasin prior to heating cytosol in the absence of molybdate did not prevent the receptor from dissociating to the 5.2-nm form, suggesting that an endogenous RNase is not involved in the transformation process. The 7.1-nm receptor form was shifted to a 9.2-nm complex when incubated with an excess of GR 49 antireceptor antibody, whereas the 8.3-nm receptor form did not bind to the antibody.(ABSTRACT TRUNCATED AT 400 WORDS
    corecore