79 research outputs found

    Large scale distribution of total mass versus luminous matter from Baryon Acoustic Oscillations: First search in the SDSS-III BOSS Data Release 10

    Get PDF
    Baryon Acoustic Oscillations (BAOs) in the early Universe are predicted to leave an as yet undetected signature on the relative clustering of total mass versus luminous matter. A detection of this effect would provide an important confirmation of the standard cosmological paradigm and constrain alternatives to dark matter as well as non-standard fluctuations such as Compensated Isocurvature Perturbations (CIPs). We conduct the first observational search for this effect, by comparing the number-weighted and luminosity-weighted correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample. When including CIPs in our model, we formally obtain evidence at 3.2σ3.2\sigma of the relative clustering signature and a limit that matches the existing upper limits on the amplitude of CIPs. However, various tests suggest that these results are not yet robust, perhaps due to systematic biases in the data. The method developed in this Letter, used with more accurate future data such as that from DESI, is likely to confirm or disprove our preliminary evidence.Comment: 6 pages, 2 figures, accepted for publication in PR

    Scale Dependence of Halo Bispectrum from Non-Gaussian Initial Conditions in Cosmological N-body Simulations

    Get PDF
    We study the halo bispectrum from non-Gaussian initial conditions. Based on a set of large NN-body simulations starting from initial density fields with local type non-Gaussianity, we find that the halo bispectrum exhibits a strong dependence on the shape and scale of Fourier space triangles near squeezed configurations at large scales. The amplitude of the halo bispectrum roughly scales as fnl2f_nl^2. The resultant scaling on the triangular shape is consistent with that predicted by Jeong & Komatsu based on perturbation theory. We systematically investigate this dependence with varying redshifts and halo mass thresholds. It is shown that the fnlf_nl dependence of the halo bispectrum is stronger for more massive haloes at higher redshifts. This feature can be a useful discriminator of inflation scenarios in future deep and wide galaxy redshift surveys.Comment: 27 pages, 10 figures; revised argument in section 6, added appendix C, JCAP accepted versio

    Phytodentistry in Africa: prospects for head and neck cancers

    Get PDF
    Background Orthodox dentistry has undergone significant changes in recent times with the introduction of various omics and molecular targeted therapies both at the experimental/trial and clinical implementation level. Although, significant milestones have been achieved in the molecular dentistry field in the past decade, there remains a dearth of application of phytopharmacological innovation in personalized and targeted therapies for dental diseases. Main body From time immemorial, plant products have long been an integral aspect of dental practice ranging from chewing sticks/herbal kinds of toothpaste to dental/impression materials. The current era of precision medicine seeks to apply a multipronged molecular and bio-computational approaches to solve fundamental medical problems that have hitherto remained difficult. Remarkable changes in the molecular/omics era, have transformed empirical therapies into personalized/individualized ones. Furthermore, the combinatorial application and the widespread introduction of high-throughput molecular tools such as pharmacogenomics, phytopharmacology, metabolomics, mathematical modelling, and genetic engineering inter alia, has tremendously improved the diagnostic and therapeutic landscape of medicine. Additionally, the variable molecular epidemiology of diseases among different population and emerging molecular evidence warrants the use of customized novel theranostic techniques. Unfortunately, the footprint of such emerging application is sparse in dental diseases such as maxillofacial cancers. Conclusion Hence, this review seeks to evaluate the potential application of phytopharmacological approaches to head and neck cancers in a resource-limited environment, such as Africa

    Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey

    Get PDF
    We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SExtractor), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 2

    First results on monolithic CMOS detector with internal gain

    Get PDF
    : In this paper we report on a set of characterisations carried out on the first monolithic LGAD prototype integrated in a customised 110 nm CMOS process having a depleted active volume thickness of 48 μm. This prototype is formed by a pixel array where each pixel has a total size of 100 μm × 250 μm and includes a high-speed front-end amplifier. After describing the sensor and the electronics architecture, both laboratory and in-beam measurements are reported and described. Optical characterisations performed with an IR pulsed laser setup have shown a sensor internal gain of about 2.5. With the same experimental setup, the electronic jitter was found to be between 50 ps and 150 ps, depending on the signal amplitude. Moreover, the analysis of a test beam performed at the Proton Synchrotron (PS) T10 facility of CERN with 10 GeV/c protons and pions indicated that the overall detector time resolution is in the range of 234 ps to 244 ps. Further TCAD investigations, based on the doping profile extracted from C(V) measurements, confirmed the multiplication gain measured on the test devices. Finally, TCAD simulations were used to tune the future doping concentration of the gain layer implant, targeting sensors with a higher avalanche gain. This adjustment is expected to enhance the timing performance of the sensors of the future productions, in order to cope with the high event rate expected in most of the near future high-energy and high-luminosity physics experiments, where the time resolution will be essential to disentangle overlapping events and it will also be crucial for Particle IDentification (PID

    Delivery of costimulatory blockade to lymph nodes promotes transplant acceptance in mice

    Get PDF
    The lymph node (LN) is the primary site of alloimmunity activation and regulation during transplantation. Here, we investigated how fibroblastic reticular cells (FRCs) facilitate the tolerance induced by anti-CD40L in a murine model of heart transplantation. We found that both the absence of LNs and FRC depletion abrogated the effect of anti-CD40L in prolonging murine heart allograft survival. Depletion of FRCs impaired homing of T cells across the high endothelial venules (HEVs) and promoted formation of alloreactive T cells in the LNs in heart-transplanted mice treated with anti-CD40L. Single-cell RNA sequencing of the LNs showed that anti-CD40L promotes a Madcam1+ FRC subset. FRCs also promoted the formation of regulatory T cells (Tregs) in vitro. Nanoparticles (NPs) containing anti-CD40L were selectively delivered to the LNs by coating them with MECA-79, which binds to peripheral node addressin (PNAd) glycoproteins expressed exclusively by HEVs. Treatment with these MECA-79-anti-CD40L-NPs markedly delayed the onset of heart allograft rejection and increased the presence of Tregs. Finally, combined MECA-79-anti-CD40L-NPs and rapamycin treatment resulted in markedly longer allograft survival than soluble anti-CD40L and rapamycin. These data demonstrate that FRCs are critical to facilitating costimulatory blockade. LN-targeted nanodelivery of anti-CD40L could effectively promote heart allograft acceptance

    The DESI survey validation : results from visual inspection of bright galaxies, luminous red galaxies, and emission line galaxies

    Get PDF
    Funding: TWL was supported by the Ministry of Science and Technology (MOST 111-2112-M-002-015-MY3), the Ministry of Education, Taiwan (MOE Yushan Young Scholar grant NTU-110VV007), National Taiwan University research grants (NTU CC-111L894806, NTU- 111L7318), and NSF grant AST-1911140. DMA acknowledges the Science Technology and Facilities Council (STFC) for support through grant code ST/T000244/1. This research is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under Contract No. DE–AC02–05CH11231, and by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility under the same contract; additional support for DESI is provided by the U.S. National Science Foundation, Division of Astronomical Sciences under Contract No. AST-0950945 to the NSF’s National Optical-Infrared Astronomy Research Laboratory; the Science and Technologies Facilities Council of the United Kingdom; the Gordon and Betty Moore Foundation; the Heising-Simons Foundation; the French Alternative Energies and Atomic Energy Commission (CEA); the National Council of Science and Technology of Mexico (CONACYT); the Ministry of Science and Innovation of Spain (MICINN), and by the DESI Member Institutions: https://www.desi.lbl.gov/ collaborating-institutions.The Dark Energy Spectroscopic Instrument (DESI) Survey has obtained a set of spectroscopic measurements of galaxies for validating the final survey design and target selections. To assist these tasks, we visually inspect (VI) DESI spectra of approximately 2,500 bright galaxies, 3,500 luminous red galaxies, and 10,000 emission line galaxies, to obtain robust redshift identifications. We then utilize the VI redshift information to characterize the performance of the DESI operation. Based on the VI catalogs, our results show that the final survey design yields samples of bright galaxies, luminous red galaxies, and emission line galaxies with purity greater than 99%. Moreover, we demonstrate that the precision of the redshift measurements is approximately 10 km/s for bright galaxies and emission line galaxies and approximately 40 km/s for luminous red galaxies. The average redshift accuracy is within 10 km/s for the three types of galaxies. The VI process also helps to improve the quality of the DESI data by identifying spurious spectral features introduced by the pipeline. Finally, we show examples of unexpected real astronomical objects, such as Lyman α emitters and strong lensing candidates, identified by VI. These results demonstrate the importance and utility of visually inspecting data from incoming and upcoming surveys, especially during their early operation phases.Publisher PDFPeer reviewe

    Cosmology from cosmic shear with Dark Energy Survey science verification data

    Get PDF
    We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find sigma8(Omegam/0.3 )0.5=0.81 ±0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are ˜30 % larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of sigma8(Omegam/0.3 )0.5 is present regardless of the value of w
    corecore