25 research outputs found

    Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    No full text
    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis

    Impairing MLL-fusion gene-mediated transformation by dissecting critical interactions with the lens epithelium-derived growth factor (LEDGF/p75)

    No full text
    The lens epithelium-derived growth factor (LEDGF/p75) tethers the mixed-lineage leukemia (MLL1) protein complex to chromatin. Likewise, LEDGF/p75 tethers the HIV-1 pre-integration complex to chromatin. We previously demonstrated that expression of the C-terminal fragment fused to enhanced green fluorescent protein (eGFP) (eGFP-LEDGF(325-530)) impaired HIV-1 replication. Here, we explored this strategy to selectively interfere with the leukemogenic activity of MLL-fusion proteins. We found that expression of LEDGF(325-530) impaired the clonogenic growth of MLL-fusion gene transformed human and mouse hematopoietic cells, without affecting the growth of control cells immortalized by the FLT3-ITD mutant or normal lineage-marker-depleted murine bone marrow cells. Expression of LEDGF(325-530) was associated with downregulation of the MLL target Hoxa9 and impaired cell cycle progression. Structure-function analysis revealed two small eGFP-fused LEDGF/p75 peptides, LEDGF(424-435) and LEDGF(375-386) phenocopying these effects. Both LEDGF(325-530) and the smaller active peptides were able to disrupt the LEDGF/p75-MLL interaction. Expression of LEDGF(325-530) or LEDGF(375-386) fragments increased the latency period to disease development in vivo in a mouse bone marrow transplant model of MLL-AF9-induced AML. We conclude that small peptides disrupting the LEDGF/p75-MLL interface have selective anti-leukemic activity providing a direct rationale for the design of small molecule inhibitors targeting this interaction

    LEDGF/p75 is dispensable for hematopoiesis but essential for MLL-rearranged leukemogenesis

    No full text
    Mixed lineage leukemia (MLL) represents a genetically distinct and aggressive subset of human acute leukemia carrying chromosomal translocations of the MLL gene. These translocations result in oncogenic fusions that mediate aberrant recruitment of the transcription machinery to MLL target genes. The N-terminus of MLL and MLL-fusions form a complex with Lens Epithelium-Derived Growth Factor (LEDGF/p75; encoded by the PSIP1 gene) and MENIN. This complex contributes to the association of MLL and MLL-fusion multiprotein complexes with the chromatin. Several studies have shown that both MENIN and LEDGF/p75 are required for efficient MLL-fusion-mediated transformation and for the expression of downstream MLL-regulated genes like HOXA9 and MEIS1 In the light of developing a therapeutic strategy targeting this complex, understanding the function of LEDGF/p75 in normal hematopoiesis is crucial. We generated a conditional Psip1 knockout mouse model in the hematopoietic compartment and examined the effects of LEDGF/p75 depletion in postnatal hematopoiesis and the initiation of MLL leukemogenesis. Psip1 knockout mice were viable but showed several defects in hematopoiesis, reduced colony-forming activity in vitro, decreased expression of Hox genes in the hematopoietic stem cells and decreased MLL occupancy at MLL target genes. Finally, in vitro and in vivo experiments showed that LEDGF/p75 is dispensable for steady-state hematopoiesis but essential for the initiation of MLL-mediated leukemia. These data corroborate the MLL-LEDGF/p75 interaction as novel target for the treatment of MLL-rearranged leukemia.status: publishe

    LEDGF/p75 is dispensable for hematopoiesis but essential for MLL-rearranged leukemogenesis

    No full text
    Mixed lineage leukemia (MLL) represents a genetically distinct and aggressive subset of human acute leukemia carrying chromosomal translocations of the MLL gene. These translocations result in oncogenic fusions that mediate aberrant recruitment of the transcription machinery to MLL target genes. The N-terminus of MLL and MLL-fusions form a complex with lens epithelium-derived growth factor (LEDGF/p75; encoded by the PSIP1 gene) and MENIN. This complex contributes to the association of MLL and MLL-fusion multiprotein complexes with the chromatin. Several studies have shown that both MENIN and LEDGF/p75 are required for efficient MLL-fusion-mediated transformation and for the expression of downstream MLL-regulated genes such as HOXA9 and MEIS1. In light of developing a therapeutic strategy targeting this complex, understanding the function of LEDGF/p75 in normal hematopoiesis is crucial. We generated a conditional Psip1 knockout mouse model in the hematopoietic compartment and examined the effects of LEDGF/p75 depletion in postnatal hematopoiesis and the initiation of MLL leukemogenesis. Psip1 knockout mice were viable but showed several defects in hematopoiesis, reduced colony-forming activity in vitro, decreased expression of Hox genes in the hematopoietic stem cells, and decreased MLL occupancy at MLL target genes. Finally, in vitro and in vivo experiments showed that LEDGF/p75 is dispensable for steady-state hematopoiesis but essential for the initiation of MLL-mediated leukemia. These data corroborate the MLL-LEDGF/p75 interaction as novel target for the treatment of MLL-rearranged leukemia

    Nuclear interacting SET domain protein 1 inactivation impairs GATA1-regulated erythroid differentiation and causes erythroleukemia

    No full text
    International audienceThe nuclear receptor binding SET domain protein 1 (NSD1) is recurrently mutated in human cancers including acute leukemia. We show that NSD1 knockdown alters erythroid clonogenic growth of human CD34+ hematopoietic cells. Ablation of Nsd1 in the hematopoietic system of mice induces a transplantable erythroleukemia. In vitro differentiation of Nsd1-/- erythroblasts is majorly impaired despite abundant expression of GATA1, the transcriptional master regulator of erythropoiesis, and associated with an impaired activation of GATA1-induced targets. Retroviral expression of wildtype NSD1, but not a catalytically-inactive NSD1N1918Q SET-domain mutant induces terminal maturation of Nsd1-/- erythroblasts. Despite similar GATA1 protein levels, exogenous NSD1 but not NSDN1918Q significantly increases the occupancy of GATA1 at target genes and their expression. Notably, exogenous NSD1 reduces the association of GATA1 with the co-repressor SKI, and knockdown of SKI induces differentiation of Nsd1-/- erythroblasts. Collectively, we identify the NSD1 methyltransferase as a regulator of GATA1-controlled erythroid differentiation and leukemogenesis

    Expression of Nup98 fusions perturbs the nuclear distribution of lamina-associated polypeptide 2α (LAP2α).

    No full text
    <p>HeLa cells were transiently transfected with GFP constructs and fixed and stained after 24 hours for immunofluorescence microscopy. (<b>A</b>) Lamin A/C (LA/C, red) concentrates at the nuclear envelope in HeLa control cells and in Nup98 expressing cells (green), while LAP2α (magenta) is found throughout the nucleoplasm. In HeLa cells expressing Nup98-HOXA9 (<b>A</b>) and Nup98-HHEX (<b>B</b>), LAP2α diminished from the nucleoplasm and aggregates at the nuclear periphery. Disruption of the homeodomain in HOXA9 (<b>A</b>) and HHEX (<b>B</b>) and the FG domain of Nup98 (<b>A</b> and <b>B</b>) prevent the relocation of the lamina proteins. DAPI was used to visualize DNA (merge). (<b>B</b>) Fluorescence intensity of LAP2α staining was determined along the axis shown as line in the fluorescence images and plotted as a graph. (<b>D</b>) Quantification of cells with altered LA/C and LAP2α distribution. About 400 cells were analyzed for each sample. (<b>E</b>) Western blot analysis of the expression levels of LA/C, LAP2α, and LB1.</p

    Mitotic localization of Nup98 chimeras.

    No full text
    <p>HeLa cells were transiently transfected with GFP constructs and fixed and stained after 24 hours for immunofluorescence microscopy. (<b>A</b>) CREST serum, which in particular recognizes CENP-B [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0152321#pone.0152321.ref036" target="_blank">36</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0152321#pone.0152321.ref055" target="_blank">55</a>], was used to detect the inner kinetochore and DAPI to visualize DNA. Nup98-HD fusion proteins (Nup98-HOXA9, Nup98-HHEX, Nup98-PMX1; green) associate with chromatin (blue), but not with the inner kinetochore (red) during prometaphase. No association with chromatin was found for Nup98 or Nup98 fused to non-HD partners (i.e. Nup98-JARID1A and Nup98-RARG). Disruption of the HD domain of Nup98-HOXA9 (Nup98-HOXA9 N51S), but not of the FG domain (Nup98-HOXA9 ΔFG) affects chromatin association of the fusion protein. Shown are single confocal sections. Scale bars, 5 μm. (<b>B</b>) Anti-Hec1 antibodies were used to detect the outer kinetochore (red), but no co-localization of Nup98-HOXA9, Nup98-HHEX, and Nup98-PMX1, respectively (green) was observed in prometaphase cells. The fusion proteins exclusively associated with chromatin (blue). Shown are single confocal sections. Scale bars, 5 μm.</p
    corecore