8 research outputs found

    Recent Advancements in Schiff Base Fluorescence Chemosensors for the Detection of Heavy Metal Ions

    Get PDF
    The Schiff base was first synthesized by Hugo Schiff through the condensation reaction of primary amines with carbonyl compounds (aldehyde or ketone) in 1864. Schiff bases exhibit many structural and electrical characteristics that enable their use in a variety of fields, including medical and chemosensing. Schiff bases generate stable complexes when they bind with different metal ions. Schiff bases are employed as fluorescent turn-on/turn-off chemosensors for the detection of various metal cations, such as Hg2+, Cd2+, Cr3+, Pd2+, and As3+ in various materials due to their outstanding coordination ability. This chapter examines a variety of Schiff bases that are employed in chemosensing procedures for various metal ions (such as divalent and trivalent cations) in various biological, agricultural, and environmental settings

    Host-guest interactions of coumarin-based 1,2-pyrazole using analytical and computational methods: Paper strip-based detection, live cell imaging, logic gates and keypad lock applications

    Get PDF
    A novel Coumarin-based 1,2-pyrazole, HCPyTSC is synthesised and characterized. The chemosensor has been shown to have efficient colourimetric and fluorescence sensing capabilities for the quick and selective detection of fluoride and copper ions. At 376 and 430 nm, the HCPyTSC exhibits selective sensing for Cu2+ and F− ions. By examining the natural bond orbital (NBO) analysis and the potential energy curve (PES) of the ground state for the function of the C–H bond, it has been determined from the theoretical study at hand that the deprotonation was taken from the ‘CH’ proton of the pyrazole ring. For F− and Cu2+, the HCPyTSC detection limits were 4.62 nM and 15.36 nM, respectively. Similarly, the binding constants (Kb) for F− and Cu2+ ions in acetonitrile medium were found to be 2.06 × 105 M−1 and 1.88 × 105 M−1. Chemosensor HCPyTSC with and without F− and Cu2+ ions have an emission and absorption response that can imitate a variety of logic gates, including the AND, XOR, and OR gates. Additionally, a paper-based sensor strip with the HCPyTSC was created for use in practical, flexible F− sensing applications. The paper-based sensor was more effective in detecting F− than other anions. The effectiveness of HCPyTSC for the selective detection of F− in living cells as well as its cell permeability were examined using live-cell imaging in T24 cells
    corecore