39 research outputs found

    PrionW : a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores

    Get PDF
    Altres ajuts: SUDOE, INTERREG IV B, FEDER [SOE4/P1/E831to S.V.]; ICREA [ICREA Academia 2009 to S.V.]Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/

    Protein folding activity of ribosomal rna is a selective target of two unrelated antiprion drugs

    Get PDF
    Background: 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases.Methodology/Principal Findings: Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome.Conclusion/Significance: 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity

    Protein Folding Activity of Ribosomal RNA Is a Selective Target of Two Unrelated Antiprion Drugs

    Get PDF
    International audienceBACKGROUND: 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome. CONCLUSION/SIGNIFICANCE: 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity

    When amyloids become prions

    No full text
    <div><p>The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer's disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases. However, since all amyloids could be considered prions (from those involved in cell-to-cell transmission to those responsible for real neuronal invasion), it is necessary to find an underlying cause of the different capacity to infect that each of the proteins prone to form amyloids has. As proposed here, both the intrinsic cytotoxicity and the number of nuclei of aggregation per cell could be key factors in this transmission capacity of each amyloid.</p></div

    Amyloids or Prions? That is the Question

    Get PDF
    Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allows to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation.peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=kprn20status: publishe

    Thioflavin-T excimer formation upon interaction with amyloid fibers.

    No full text
    International audienceThe molecular mechanism of the Thioflavin-T (Th-T) binding to amyloids remains unknown. By combining experimental analysis of Th-T excitation and emission spectra with theoretical calculations we suggest that Th-T fluorescence changes upon interaction with amyloids may arise from the formation of an excimer with an oblique angle of ∌120 degrees

    Hydrophobic residues in pWALTZ amyloid cores.

    No full text
    <p>The frequency of the indicated hydrophobic residues in pWALTZ amyloid cores relative to that in all the proteins in SwissProt is plotted for non-prion (red) and prion (white) domains. Positive and negative values correspond to overrepresented and underrepresented amino acids or amino acid groups, respectively.</p

    Alternative models for amyloid formation in prion-like domains.

    No full text
    <p>The compositional model relies on the establishment a large number of weak interactions whereas the pWALTZ model suggests a preferential nucleation by a short amyloidogenic stretch, whose amyloid propensity is modulated by the structural context.</p

    Relationship between amyloid and prion propensities.

    No full text
    <p>Average pWALTZ scores of prion (white) and non-prion (red) domains.</p

    Prediction of prion propensity of Q/N-rich putative prions.

    No full text
    <p>Prion recovery using the prion/non-prion (NP/P) classification of selected putative prions according to Alberti's scale of prion activity. ROC plots shows pWALTZ (A) and PAPA (B) performance and box plots showing predicted prion propensity as scored by pWALTZ (C) and PAPA (D) are shown.</p
    corecore