15 research outputs found

    The Historical Roots of the Field of Engineering Systems: Results from an In-class Assignment

    Get PDF
    The field of Engineering Systems (ES) is quite young but there are intellectual roots that go far back in time. At least that is the working hypothesis in an integrative capstone assignment given in the first doctoral subject for incoming ES PhD students at MIT. The assignment has been given for four years (2008-2011) and involves pairs of students researching the intellectual connections between a specific historical root and a specific modern ES method. This paper describes the faculty and student perspectives on the assignment, including the perceived learning outcomes, and insights gained into the roots of Engineering Systems. Some overall observations include: Interconnections among almost all selected topics (whether labeled roots or modern methods) are apparent. Each topic has an extensive time period of unfolding which gives rise to overlap and complex interactions among the topics; Herbert Simon’s work appears most pivotal in the roots of Engineering Systems. Jay Forrester, John von Neumann, Norbert Weiner and Joseph Schumpeter are also identified along with others as having a significant impact; The faculty always learn something about the field from what the students find even when topics are repeated; and, The assignment is a valuable – but not perfect – vehicle for learning about Engineering Systems and for launching budding researchers’ efforts in the field

    Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies

    Get PDF
    Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission 'Managing the health effects of climate change' through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake

    Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions.

    Get PDF
    BACKGROUND: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. OBJECTIVE: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. METHODS: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. RESULTS: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. DISCUSSION: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice. https://doi.org/10.1289/EHP6745

    Air quality impacts and benefits under U.S. policy for air pollution, climate change, and clean energy

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Engineering Systems Division, 2015.Cataloged from PDF version of thesis.Includes bibliographical references (pages 86-94).Policies that reduce greenhouse gas emissions can also reduce outdoor levels of air pollutants that harm human health by targeting the same emissions sources. However, the design and scale of these policies can affect the distribution and size of air quality impacts, i.e. who gains from pollution reductions and by how much. Traditional air quality impact analysis seeks to address these questions by estimating pollution changes with regional chemical transport models, then applying economic valuations directly to estimates of reduced health risks. In this dissertation, I incorporate and build on this approach by representing the effect of pollution reductions across regions and income groups within a model of the energy system and economy. This new modeling framework represents how climate change and clean energy policy affect pollutant emissions throughout the economy, and how these emissions then affect human health and economic welfare. This methodology allows this thesis to explore the effect of policy design on the distribution of air quality impacts across regions and income groups in three studies. The first study compares air pollutant emissions under state-level carbon emission limits with regional or national implementation, as proposed in the U.S. EPA Clean Power Plan. It finds that the flexible regional and national implementations lower the costs of compliance more than they adversely affect pollutant emissions. The second study compares the costs and air quality co-benefits of two types of national carbon policy: an energy sector policy, and an economy-wide cap-and-trade program. It finds that air quality impacts can completely offset the costs of a cost-effective carbon policy, primarily through gains in the eastern United States. The final study extends the modeling framework to be able to examine the impacts of ozone policy with household income. It finds that inequality in exposure makes ozone reductions relatively more valuable for low income households. As a whole, this work contributes to literature connecting actions to impacts, and identifies an ongoing need to improve our understanding of the connection between economic activity, policy actions, and pollutant emissions.by Rebecca Kaarina Saari.Ph. D

    U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation

    No full text
    We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O[subscript 3]) and fine particulate matter (PM[subscript 2.5]) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.United States. Environmental Protection Agency. Climate Change Division (Cooperative Agreement XA-83600001-0
    corecore