893 research outputs found

    A regularisation approach to causality theory for C^{1,1}Lorentzian metrics

    No full text
    We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to C^{1,1}. Our approach is based on regularisations of the metric adapted to the causal structure

    Complement-Mediated Virus Infectivity Neutralisation by HLA Antibodies Is Associated with Sterilising Immunity to SIV Challenge in the Macaque Model for HIV/AIDS.

    Get PDF
    Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe

    Gefitinib (IRESSA) sensitive lung cancer cell lines show phosphorylation of Akt without ligand stimulation

    Get PDF
    BACKGROUND: Phase III trials evaluating the efficacy of gefitinib (IRESSA) in non-small cell lung cancer (NSCLC) lend support to the need for improved patient selection in terms of gefitinib use. Mutation of the epidermal growth factor receptor (EGFR) gene is reported to be associated with clinical responsiveness to gefitinib. However, gefitinib-sensitive and prolonged stable-disease-defined tumors without EGFR gene mutation have also been reported. METHODS: To identify other key factors involved in gefitinib sensitivity, we analyzed the protein expression of molecules within the EGFR family, PI3K-Akt and Ras/MEK/Erk pathways and examined the sensitivity to gefitinib using the MTT cell proliferation assay in 23 lung cancer cell lines. RESULTS: We identified one highly sensitive cell line (PC9), eight cell lines displaying intermediate-sensitivity, and 14 resistant cell lines. Only PC9 and PC14 (intermediate-sensitivity) displayed an EGFR gene mutation including amplification. Eight out of the nine cell lines showing sensitivity had Akt phosphorylation without ligand stimulation, while only three out of the 14 resistant lines displayed this characteristic (P = 0.0059). Furthermore, the ratio of phosphor-Akt/total Akt in sensitive cells was higher than that observed in resistant cells (P = 0.0016). Akt phosphorylation was partially inhibited by gefitinib in all sensitive cell lines. CONCLUSION: These results suggest that Akt phosphorylation without ligand stimulation may play a key signaling role in gefitinib sensitivity, especially intermediate-sensitivity. In addition, expression analyses of the EGFR family, EGFR gene mutation, and FISH (fluorescence in situ hybridization) analyses showed that the phosphorylated state of EGFR and Akt might be a useful clinical marker of Akt activation without ligand stimulation, in addition to EGFR gene mutation and amplification, particularly in adenocarcinomas

    Renal artery stenosis-when to screen, what to stent?

    Get PDF
    Renal artery stensosis (RAS) continues to be a problem for clinicians, with no clear consensus on how to investigate and assess the clinical significance of stenotic lesions and manage the findings. RAS caused by fibromuscular dysplasia is probably commoner than previously appreciated, should be actively looked for in younger hypertensive patients and can be managed successfully with angioplasty. Atheromatous RAS is associated with increased incidence of cardiovascular events and increased cardiovascular mortality, and is likely to be seen with increasing frequency. Evidence from large clinical trials has led clinicians away from recommending interventional revascularisation towards aggressive medical management. There is now interest in looking more closely at patient selection for intervention, with focus on intervening only in patients with the highest-risk presentations such as flash pulmonary oedema, rapidly declining renal function and severe resistant hypertension. The potential benefits in terms of improving hard cardiovascular outcomes may outweigh the risks of intervention in this group, and further research is needed

    Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC

    Get PDF
    In non-small-cell lung cancer (NSCLC), epidermal growth factor receptor (EGFR) and K-RAS mutations of the primary tumour are associated with responsiveness and resistance to tyrosine kinase inhibitors (TKIs), respectively. However, the EGFR and K-RAS mutation status in metastases is not well studied. We compared the mutation status of these genes between the primary tumours and the corresponding metastases of 25 patients. Epidermal growth factor receptor and K-RAS mutation status was different between primary tumours and corresponding metastases in 7 (28%) and 6 (24%) of the 25 patients, respectively. Among the 25 primary tumours, three ‘hotspot' and two non-classical EGFR mutations were found; none of the corresponding metastases had the same mutation pattern. Among the five (20%) K-RAS mutations detected in the primary tumours, two were maintained in the corresponding metastasis. Epidermal growth factor receptor and K-RAS mutations were detected in the metastatic tumours of three (12%) and five (20%) patients, respectively. The expressions of EGFR and phosphorylated EGFR showed 10 and 50% discordance, in that order. We conclude that there is substantial discordance in EGFR and K-RAS mutational status between the primary tumours and corresponding metastases in patients with NSCLC and this might have therapeutic implications when treatment with TKIs is considered

    Biomarkers of clinical benefit for anti-epidermal growth factor receptor agents in patients with non-small-cell lung cancer

    Get PDF
    Non-small-cell lung cancer (NSCLC) remains by far the major cause of cancer-related death in the Western world in both men and women. The majority of patients will be diagnosed with metastatic disease, and chemotherapy doublets remain the cornerstone of treatment for these patients. However, chemotherapy has a minimal impact on long-term survival and prognosis remains poor for these patients. Further improvement in treatment is likely to require incorporation of novel targeted therapies. Among these agents, inhibitors of the epidermal growth factor receptor (EGFR) have demonstrated significant activity in the first-, second- or third-line treatment of NSCLC. The purpose of current paper is to present the evidence for using several proposed molecular biomarkers as a tool for selection of NSCLC patients for anti-EGFR treatment. According to current data, EGFR mutation status appears to be the strongest predictor for the selection of NSCLC patients to first-line treatment with EGFR tyrosine kinase inhibitors vs chemotherapy. Use of other biomarkers remains investigational

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
    • 

    corecore