692 research outputs found

    Body temperature manipulation and exercise performance in athletically trained males

    Get PDF
    Exercise or activity in high ambient temperatures offers a particular challenge to the thermoregulatory system. It is likely that mechanisms such as sweat evaporation alone are not sufficient for maintaining body temperature within a safe limit (~36.5-38.5˚C) and below 40˚C, which may result in impaired physiological function and performance. Exogenous cooling may be of benefit prior to, during and after events that place increased thermal strain due to increased metabolic heat production and elevated environmental temperatures upon the thermoregulatory system. Conversely, in situations where it is not possible to maintain body temperature via either continued physical activity or elevated ambient temperatures, exogenous heating may be required in order to allow optimal physiological performance. Few studies have directly aligned cooling devices with data detailing effective target regions for cooling to allow a pre-cooling garment to be of minimal weight but maximal cooling efficiency. Conversely, no study has considered the effect of muscle temperature maintenance during rest periods on subsequent power-based activities. The aim of this thesis was to determine ways in which body temperature manipulation is capable of improving exercise performance in both power and endurance-based events. It was hypothesised that the manipulation of body temperature will result in subsequent changes in body temperature that would improve performance. Specifically, the use of pre-cooling would result in a reduction of body temperature and improve endurance exercise performance. Conversely, maintaining Tm following warm up completion would have a beneficial effect on sprint and power related performance. Study one set out to determine differences in regional body heat loss in 12 individual anatomical zones using a water perfused suit. Data obtained from this initial study allowed for the specific targeting of regions that were identified as having high rates of heat loss in subsequent studies that focused on pre-cooling and performance. The anatomical regions identified as having high potential affinity for heat exchange with the surrounding environment and cooling devices were the hands, forearms, upper and lower back and torso. Subsequent studies demonstrated that cooling of these areas was capable of lowering thermal sensation and improving thermal comfort prior to and during exercise in moderate environmental conditions (24˚C, 50% RH). In these moderate conditions, there was no statistically significant improvement in treadmill based self-paced 5000m running performance. However, in hot conditions (35˚C 50% RH), the use of a cooling vest and sleeves did yield a significant improvement in cycling time trial performance, which equated to 4.8%. This leads to the suggestion that there may be a threshold ambient temperature, above which pre-cooling becomes an important tool in maximizing performance potential. A parallel area of investigation, on the other side of the temperature spectrum, was the effect of muscle temperature manipulation on power-based exercise performance. The relationship between increased muscle temperature and power output is well established, however little is known about the effect of enforced rest or recovery between two bouts of exercise. Therefore, two studies were conducted to establish what affect a delay between warm up completion and exercise has on muscle temperature and subsequent sprint cycling performance. It was shown that with 30-minutes of rest between exercise bouts wearing tracksuit trousers, muscle temperature declined significantly (~1-1.5˚C). This decline was attenuated with the use of external passive electrical heating during the recovery compared to recovery completed in tracksuit trousers alone. The attenuated decline in muscle temperature following the use of the heated trousers resulted in an improvement in sprint cycling performance (~9%), with the use of insulated trousers having no effect on any variables measured, all relative to wearing tracksuit trousers in the rest period. In a follow-up study, the effect of implementing the heated trousers during the warm up and in addition to the rest period had on muscle temperature increase and sprint performance. A secondary area of investigation in this study was to determine the linearity of muscle temperature decline following warm up cessation. This study demonstrated that there was no additional benefit of combining passive heating with an active warm up on either muscle temperature elevations or subsequent sprint performance compared to the active warm up alone. It was shown that when the no heating was used at any stage, muscle temperature declined exponentially. However, when the heated trousers were used during recovery and/or during warm up, muscle temperature levelled off at a higher value towards the end of the recovery period. This study was also able to show significant improvements in absolute, relative and mean power output following the use of the heated trousers in the warm up and recovery, or the recovery alone. This thesis has identified ways in which body temperature may be manipulated in order to benefit both sprint and endurance exercise performance, using both pre-cooling and active heating. A novel concept for minimizing muscle temperature decline during periods of inactivity between different rounds of competition was shown to maximize sprint performance yielding significant improvements in peak and mean power outputs

    Effect of combinations of passive and active warming on muscle temperature and sprint performance

    Get PDF
    Muscle temperature (Tm) has a significant effect on muscle function, force and power production [1], hence the adoption of warm up procedures before power based events. In the majority of sprint or power based events there are periods of maximal activity interspersed with periods of low or no activity, during which Tm may decline, adversely affecting subsequent performance. We have previously shown that Tm will decline during 30 minutes of inactivity following the completion of a warm up, and that the use of passive external heating between warm up completion and sprint cycling performance reduces Tm decline and improves peak power output [2]. The aim of the present study was to follow on from our first Tm study and determine whether, apart from using the electrical heating between warm up and event, there is an additional benefit of using the electrical heating during warm up completion on muscle temperature and subsequent measures of sprint cycling performance. The secondary goal was to look at the efficacy of a redesigned heating system covering a larger area of muscle than in [2]

    Acute and chronic effects of hot water immersion on inflammation and metabolism in sedentary, overweight adults

    Get PDF
    Regular exercise-induced acute inflammatory responses are suggested to improve the inflammatory profile and insulin sensitivity. As body temperature elevations partly mediate this response, passive heating might be a viable tool to improve the inflammatory profile. This study investigated the acute, and chronic effects of hot water immersion on inflammatory and metabolic markers. Ten sedentary, overweight males (BMI: 31.0±4.2 kg/m2) were immersed in water set at 39°C for 1 h (HWI) or rested for 1 h at ambient temperature (AMB). Venous blood was obtained prior to, immediately post and 2 h post-session for assessment of monocyte intracellular heat shock protein 72 (iHsp72) and plasma concentrations of extracelullar heat shock protein 72 (eHsp72), interleukin-6 (IL-6), fasting glucose, insulin and nitrite. Thereafter, participants underwent a 2-week intervention period, consisting of 10 hot water immersion sessions (INT). Eight BMI-matched participants (BMI: 30.0±2.5 kg/m2) were included as control (CON). Plasma IL-6 and nitrite concentrations were higher immediately following HWI compared to AMB (IL-6 p<0.001, HWI: 1.37±0.94 to 2.51±1.49 pg/ml; nitrite p=0.04, HWI: 271±52 to 391±72 nM), while iHsp72 expression was unchanged (p=0.57). In contrast to resting iHsp72 expression (p=0.59), fasting glucose (p=0.04, INT: 4.44±0.93 to 3.98±0.98 mmol/l), insulin (p=0.04, INT: 68.1±44.6 to 55.0±29.9 pmol/l) and eHsp72 (p=0.03, INT: 17±41% reduction) concentrations were lowered after INT compared to CON. HWI induced an acute inflammatory response and increased nitric oxide bioavailability. The reductions in fasting glucose and insulin concentrations following the chronic intervention suggest that hot water immersion may serve as a tool to improve glucose metabolism

    Increasing heat storage by wearing extra clothing during upper body exercise up-regulates heat shock protein 70 but does not modify the cytokine response

    Get PDF
    Plasma heat shock protein 70 (HSP70) concentrations rise during heat stress, which can independently induce cytokine production. Upper body exercise normally results in modest body temperature elevations. The aim of this study was to investigate the impacts of additional clothing on the body temperature, cytokine and HSP70 responses during this exercise modality. Thirteen males performed 45-min constant-load arm cranking at 63% maximum aerobic power (62 ± 7%V̇O2peak) in either a non-permeable whole-body suit (intervention, INT) or shorts and T-shirt (control, CON). Exercise resulted in a significant increase of IL-6 and IL-1ra plasma concentrations (P 0.19). The increase in HSP70 from pre to post was only significant for INT (0.12 ± 0.11ng∙mL−1, P < 0.01 vs. 0.04 ± 0.18 ng∙mL−1, P = 0.77). Immediately following exercise, Tcore was elevated by 0.46 ± 0.29 (INT) and 0.37 ± 0.23ÂșC (CON), respectively (P < 0.01), with no difference between conditions (P = 0.16). The rise in mean Tskin (2.88 ± 0.50 and 0.30 ± 0.89ÂșC, respectively) and maximum heat storage (3.24 ± 1.08 and 1.20 ± 1.04 J∙g−1, respectively) was higher during INT (P < 0.01). Despite large differences in heat storage between conditions, the HSP70 elevations during INT, even though significant, were very modest. Possibly, the Tcore elevations were too low to induce a more pronounced HSP70 response to ultimately affect cytokine productio

    Acorn: Developing full-chain industrial carbon capture and storage in a resource- and infrastructure-rich hydrocarbon province

    Get PDF
    Research to date has identified cost and lack of support from stakeholders as two key barriers to the development of a carbon dioxide capture and storage (CCS) industry that is capable of effectively mitigating climate change. This paper responds to these challenges through systematic evaluation of the research and development process for the Acorn CCS project, a project designed to develop a scalable, full-chain CCS project on the north-east coast of the UK. Through assessment of Acorn's publicly-available outputs, we identify strategies which may help to enhance the viability of early-stage CCS projects. Initial capital costs can be minimised by infrastructure re-use, particularly pipelines, and by re-use of data describing the subsurface acquired during oil and gas exploration activity. Also, development of the project in separate stages of activity (e.g. different phases of infrastructure re-use and investment into new infrastructure) enables cost reduction for future build-out phases. Additionally, engagement of regional-level policy makers may help to build stakeholder support by situating CCS within regional decarbonisation narratives. We argue that these insights may be translated to general objectives for any CCS project sharing similar characteristics such as legacy infrastructure, industrial clusters and an involved stakeholder-base that is engaged with the fossil fuel industry

    Biophysical Characteristics Reveal Neural Stem Cell Differentiation Potential

    Get PDF
    Distinguishing human neural stem/progenitor cell (huNSPC) populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers

    Differences in Intrinsic Gray-Matter Connectivity and their genomic underpinnings in Autism Spectrum Disorder

    Get PDF
    • 

    corecore