2,163 research outputs found

    The Distribution of Minimum of Ratios of Two Random Variables and Its Application in Analysis of Multi-hop Systems

    Get PDF
    The distributions of random variables are of interest in many areas of science. In this paper, ascertaining on the importance of multi-hop transmission in contemporary wireless communications systems operating over fading channels in the presence of cochannel interference, the probability density functions (PDFs) of minimum of arbitrary number of ratios of Rayleigh, Rician, Nakagami-m, Weibull and α-” random variables are derived. These expressions can be used to study the outage probability as an important multi-hop system performance measure. Various numerical results complement the proposed mathematical analysis

    HLS: a framework for composing soft real-time schedulers

    Get PDF
    Journal ArticleHierarchical CPU scheduling has emerged as a way to (1) support applications with diverse scheduling requirements in open systems, and (2) provide load isolation between applications, users, and other resource principals. Most existing work on hierarchical scheduling has focused on systems that provide a fixed scheduling model: the schedulers in part or all of the hierarchy are specified in advance. In this paper we describe a system of guarantees that permits a general hierarchy of soft real-time schedulers-one that contains arbitrary scheduling algorithms at all points within the hierarchy-to be analyzed. This analysis results in deterministic guarantees for threads at the leaves of the hierarchy. We also describe the design, implementation, and performance evaluation of a system for supporting such a hierarchy in the Windows 2000 kernel. Finally, we show that complex scheduling behaviors can be created using small schedulers as components and describe the HLS programming environment

    Camera-Independent Single Image Depth Estimation from Defocus Blur

    Full text link
    Monocular depth estimation is an important step in many downstream tasks in machine vision. We address the topic of estimating monocular depth from defocus blur which can yield more accurate results than the semantic based depth estimation methods. The existing monocular depth from defocus techniques are sensitive to the particular camera that the images are taken from. We show how several camera-related parameters affect the defocus blur using optical physics equations and how they make the defocus blur depend on these parameters. The simple correction procedure we propose can alleviate this problem which does not require any retraining of the original model. We created a synthetic dataset which can be used to test the camera independent performance of depth from defocus blur models. We evaluate our model on both synthetic and real datasets (DDFF12 and NYU depth V2) obtained with different cameras and show that our methods are significantly more robust to the changes of cameras. Code: https://github.com/sleekEagle/defocus_camind.gi
    • 

    corecore