
In Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS
2001), pages 3–14, London, UK, December 4–6 2001. c© 2001 IEEE.

HLS: A Framework for Composing Soft Real-Time Schedulers∗

John Regehr
School of Computing

University of Utah
regehr@cs.utah.edu

John A. Stankovic
Department of Computer Science

University of Virginia
stankovic@cs.virginia.edu

Abstract

Hierarchical CPU scheduling has emerged as a way to
(1) support applications with diverse scheduling require-
ments in open systems, and (2) provide load isolation be-
tween applications, users, and other resource principals.
Most existing work on hierarchical scheduling has focused
on systems that provide a fixed scheduling model: the sched-
ulers in part or all of the hierarchy are specified in advance.
In this paper we describe a system of guarantees that per-
mits a general hierarchy of soft real-time schedulers—one
that contains arbitrary scheduling algorithms at all points
within the hierarchy—to be analyzed. This analysis re-
sults in deterministic guarantees for threads at the leaves
of the hierarchy. We also describe the design, implementa-
tion, and performance evaluation of a system for supporting
such a hierarchy in the Windows 2000 kernel. Finally, we
show that complex scheduling behaviors can be created us-
ing small schedulers as components and describe the HLS
programming environment.

1. Introduction
Complementary advances in storage, processing power, net-
work bandwidth, and data compression techniques have en-
abled computers to run new kinds of applications, and to run
combinations of applications that were previously infeasi-
ble. For example, a modern personal computer can simul-
taneously decode and display a high-quality video stream,
encode an audio stream in real time, and accurately recog-
nize continuous speech; any one of these would have been
impossible on an inexpensive machine just a few years ago.
Also, market pressure is encouraging vendors to migrate
functionality previously performed in dedicated hardware
onto the main processor; this includes real-time tasks such
as sound mixing and modem signal processing [10].

Of course, powerful hardware alone is not enough: to
reliably run combinations of independently developed real-
time applications, an operating system must effectively
manage system resources such as processor time, storage

∗This work was supported, in part, by a grant from Microsoft Research.

bandwidth, and network bandwidth. Providing each re-
source to each task at an appropriate rate and granularity
is no easy task; allocating at too high a rate or too fine a
granularity is inefficient, and allocating at too low a rate or
too coarse a granularity may drastically reduce the value
provided by applications. Scheduling is particularly diffi-
cult when the demand for one or more resources exceeds
the supply—a situation that is all too common.

In this paper we focus on processor scheduling. Our
work is motivated by two fundamental observations. First,
soft real-time applications have diverse requirements: they
are characterized not only by a period and execution time,
but also by other factors such as the way in which their value
falls off when they receive fewer resources than they require
and how much their worst-case execution times differ from
their average-case execution times. Second, computers are
used in a variety of ways—a PC running Windows 2000 or
Linux might be used to run:

• Interactive and multimedia applications, requiring
time-sharing and soft real-time scheduling.

• A web server, requiring isolation between different
web sites that are served by the same machine.

• A terminal server that supports a dozen users, requir-
ing both soft real-time scheduling and load isolation
between users.

• A parallel processing machine, requiring coordinated
scheduling between processors on a machine or be-
tween different machines.

We believe that no single scheduling policy can efficiently
meet the needs of these and other (possibly still unantici-
pated) uses of a computer. What is required is the ability to
flexibly compose scheduling algorithms in the kernel of a
general-purpose operating system. To this end we have de-
signed and implemented Hierarchical Loadable Schedulers
(HLS): a system that supports composition of scheduling
behaviors using hierarchical scheduling, as well as the abil-
ity to provide guaranteed scheduling behavior to application
threads at the leaves of the scheduling hierarchy.

The advantages of hierarchical scheduling are that sev-
eral scheduling paradigms can be concurrently supported,
that parts of the hierarchy can be selectively replaced, and
that the CPU requirements of applications, users, and other

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276282714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Low

FP

RES

J

PS

Video
Player

Voice
Recognition

Word
Processor

High

Figure 1. Example hierarchy for scheduling
multimedia applications

resource principals can be isolated from one another. Be-
yond these known properties, contributions that we show
in this paper are that HLS permits deterministic bounds on
scheduling behavior to be computed at all points within the
scheduling hierarchy; that complex, idiomatic scheduling
behaviors can be created using simple schedulers as compo-
nents; that HLS provides a convenient interface for imple-
menting new scheduling algorithms; and finally, that HLS
can be efficiently implemented in a general-purpose operat-
ing system.

2. Background
2.1. Problem Statement
Clearly, some hierarchical arrangements of schedulers are
flawed. For example, suppose that a real-time scheduler
is scheduled using a traditional time-sharing scheduler that
is based on a multi-level feedback queue algorithm. Since
the time-sharing scheduler makes no particular guarantees
to entities that it schedules, the real-time scheduler cannot
predict when it will receive CPU time, and therefore it can-
not promise threads that it schedules that they will be able
to meet their deadlines.

A thread, as a leaf node of the scheduling hierarchy, can
only be scheduled when each scheduler between it and the
root of the hierarchy schedules it at the same time. So, a
key question is “can a given scheduling hierarchy provide
threads with the guarantees that they need in order to meet
their deadlines?” We call this the scheduler composition
problem.

2.2. An Example
Figure 1 shows a hierarchy that is designed to schedule sev-
eral kinds of multimedia applications. Entities in boxes are
instances of schedulers, and arrows represent the “sched-
uled by” relation. There is a fixed-priority scheduler (FP) at

the root of the hierarchy; whenever possible, it runs a sched-
uler that provides CPU reservations (RES). When the reser-
vation scheduler does not have any threads to run, the fixed-
priority scheduler runs the join scheduler (J). A join sched-
uler permits the scheduling hierarchy to be generalized to a
directed acyclic graph. Its function is to run its child when-
ever it is scheduled by any of its parents. In other words, the
join scheduler allows the proportional share scheduler (PS)
to run when it is scheduled by RES or by FP. This allows the
PS scheduler to be guaranteed to be scheduled in a timely
way and also to take advantage of slack time in the reserva-
tion schedule. This hierarchy provides guaranteed real-time
performance to applications whose value does not degrade
gracefully when their requirements are not met, and also
provides best effort scheduling (using the PS scheduler) to
applications with looser scheduling constraints.

Subsequent sections will develop a system of guarantees
about the ongoing allocation of processor time to schedulers
and threads. This system will allow us to perform top-down
analysis of hierarchies like the one in Figure 1 in order to
determine the scheduling properties received by threads at
the leaves of the hierarchy. In Section 5.3 we will derive the
guarantee provided along each arrow shown in Figure 1.

3. Guarantees
A guarantee is provided by a scheduler to a scheduled entity
(either a thread or another scheduler) using a virtual proces-
sor (VP). For now, it is sufficient to know that VPs embody
the “scheduled by” relation. We describe them in more de-
tail in Section 6.

3.1. Definition and Properties
A guarantee is a contract between a scheduler and a sched-
uled entity regarding the distribution of CPU time that the
VP will receive for as long as the guarantee remains in
force. The meaning of a particular guarantee is defined in
two complementary ways:
• It is equivalent to a formal statement about the alloca-

tion of processor time that the guarantee promises. For
example, a real-time thread might be guaranteed that
during any time interval y units long, it will be sched-
uled for at least x time units.

• It is defined as the distribution of CPU time produced
by a particular class of scheduling algorithms.

Both aspects of a guarantee are important: the formal
statement is used to reason about scheduler composition,
and the correspondence with scheduler implementations is
used to provide a thread with the kind of scheduling service
that it requested or was assigned.

The distinguishing characteristics of guarantees are that
they describe bounds on the ongoing allocation of CPU
time, and that they are independent of particular scheduling
algorithms. The three primary advantages that this indepen-
dence confers are as follows. First, it permits an application

2

(or an entity acting on an application’s behalf) to request
scheduling based on its requirements, rather than requesting
scheduling from a particular scheduler. Second, guarantees
provide a model of CPU allocation that users can under-
stand and to which developers can program. And finally,
schedulability analysis in a hierarchical scheduling system
using guarantees can be performed using only local knowl-
edge. In other words, each scheduler can determine whether
or not it can provide a new guarantee based only on knowl-
edge of the guarantee that it receives and the guarantees that
it currently provides, rather than having to perform a global
calculation over all schedulers in the hierarchy.

3.2. Composing Schedulers using Guarantees
From the point of view of the guarantee system, the pur-
pose of the scheduling hierarchy is to convert the guarantee
representing 100% of the CPU (or the set of guarantees rep-
resenting 100% of multiple CPUs) into the set of guaran-
tees required by users, applications, and other resource con-
sumers. Two insights drive scheduler composition. First,
the guarantee a scheduler makes to its children can be no
stronger than the guarantee that it receives: guarantees must
become weaker towards the bottom of the scheduling hier-
archy. The guarantee language presented in this paper for-
malizes this notion. And second, each scheduler must re-
ceive a guarantee that is semantically compatible with the
guarantees that it makes.

Schedulers written for HLS are characterized by one
or more mappings from an acceptable guarantee to a set
of provided guarantees. Any guarantee that can be con-
verted into a guarantee that is acceptable to a scheduler is
also acceptable. For example, the start-time fair queuing
(SFQ) scheduler can accept a proportional share guarantee,
in which case it can provide proportional share guarantees
to its children. It can also accept any kind of CPU reser-
vation: they can be treated as proportional share guarantees
using formulae that we will present in Section 5.2.

To acquire a guarantee, a thread sends a message to
the appropriate scheduler requesting a new guarantee. The
scheduler uses its schedulability analysis routine to decide
whether the guarantee is feasible or not.

3.3. Analyzing Scheduling Hierarchies
A hierarchy of schedulers and threads composes correctly
if and only if (1) each scheduler in the hierarchy receives
a guarantee that is acceptable to it and (2) each application
thread receives a guarantee that is acceptable to it. The set
of guarantees that is acceptable to a scheduler is an inher-
ent property of that scheduling algorithm. The overall cor-
rectness of a scheduling hierarchy is established using the
following top-down algorithm:

1. Start with a hierarchy such as the one in Figure 1. Ini-
tially only one arrow is labeled: the operating system
gives the root scheduler a guarantee representing 100%
of the CPU.

2. Repeatedly perform these steps until either all arrows
have been labeled or it becomes impossible to provide
an acceptable guarantee to a scheduler or thread.

• When all arrows arriving at a scheduler have been
labeled with guarantees, a rule from Section 5.1
can be used to derive the guarantees that should
be used to label arrows leaving the scheduler.

• Any guarantee may be rewritten as an equivalent
guarantee using the rules that we will present in
Section 5.2.

If acceptable guarantees can be assigned to all applica-
tion threads, the hierarchy is compositionally correct, oth-
erwise it is not. This algorithm is guaranteed to terminate
because there cannot be cycles in the scheduling hierarchy.
Also, it can be straightforwardly extended to multiprocessor
machines by assigning multiple guarantees to the scheduler
at the root of the hierarchy.

The compositional correctness of a hierarchy can be es-
tablished off-line if the hierarchy will remain fixed, or it
may be established on-line by middleware.

4. Soft Real-Time Guarantees
4.1. Guarantee Syntax
Guarantees are represented by identifiers of the following
form:

TYPE [params]
Where TYPE is a name for the kind of guarantee and

[params] denotes a comma-separated list of numeric param-
eters. The number of parameters is fixed for each kind of
guarantee. In this paper guarantee parameters representing
time units will be taken to be integers representing millisec-
onds.

Except in the special case of the uniformly slower pro-
cessor guarantee, utilizations that appear as guarantee pa-
rameters are absolute, rather than relative. For example, if
a proportional share scheduler that controls the allocation
of 40% of a processor gives equal shares to two children,
the guarantees that it provides have the type PS 0.2 rather
than PS 0.5. Absolute units are used because this allows the
meaning of each guarantee to be independent of extraneous
factors such as the fraction of a processor controlled by the
parent scheduler.

4.2. Guarantee Types
This section describes the formal properties of types of
guarantees provided by various multimedia schedulers.

Root Scheduler — The scheduler at the top of the hier-
archy is given the guarantee ALL, or 100% of the CPU, by
the operating system. This guarantee has no parameters.

CPU Reservation — The CPU reservation is a funda-
mental real-time abstraction that guarantees that a thread
will be scheduled for a specific amount of time during each
period. Reservations are a good match for threads in real-
time applications whose value does not degrade gracefully

3

��
�
��
�

��
�
��
�

������
���
������
���

��
�
��
�

	�		�	
	�	

�

�

�

������
���
������
���

��
�
������
���

��
�
��
�

��
�
��
�

��
�
��
�

��
�
��
�

��
�
��
�

��
�
��
�

���
�
��
�
��
�

��

!! ""
"
##
#

$$
$
%%
%

8ms

reservation
3 ms / 8 ms

basic CPU
reservation
3 ms / 8 ms

&&

= CPU allocation

Time

continuous CPU

Figure 2. Time-line showing CPU allocation to
basic and continuous reservations

if they receive less processing time than they require. A
wide variety of scheduling algorithms can be used to imple-
ment CPU reservations, and many different kinds of reser-
vations are possible. The types of CPU reservation guaran-
tees that we have defined are:

• basic, hard: RESBH x, y
• basic, soft: RESBS x, y
• continuous, hard: RESCH x, y
• continuous, soft: RESCS x, y
Every CPU reservation is either basic or continuous, and

either hard or soft—the properties are orthogonal. We now
describe the properties of these kinds of CPU reservations.

Basic CPU reservations are what would be provided by
an EDF or rate monotonic scheduler that limits the exe-
cution time of each thread that it schedules using a bud-
get. For a reservation with amount x and period y, a ba-
sic reservation makes a guarantee to a virtual processor that
there exists a time t such that for every integer i the VP
will receive x units of CPU time during the time interval
[t + iy, t + (i + 1)y]. In other words, the reservation sched-
uler divides time into period-sized intervals, during each of
which it guarantees the VP to receive the reserved amount
of CPU time. The value of t is chosen by the scheduler and
is not made available to the application.

Continuous CPU reservations (as defined by Jones et
al. [11]) are those that make the following guarantee: given
a reservation with amount x and period y, for any time t,
the thread will be scheduled for x time units during the
time interval [t, t + y]. A continuous CPU reservation is a
stronger guarantee than a basic CPU reservation since every
period-sized time interval will contain the reserved amount
of CPU time, rather than only certain scheduler-chosen in-
tervals. Continuous reservations are provided by schedulers
that utilize a (possibly dynamically computed) static sched-
ule, such as Rialto [11] and Rialto/NT [9], where a thread
with a reservation receives its CPU time at the same offset
during every period. In contrast, a basic reservation sched-
uler retains the freedom to schedule a task during any time
interval (or combination of shorter intervals) x units long
within each time interval y units long. Figure 2 depicts two
CPU reservations, one basic and one continuous, that are
guaranteed to receive 3 ms of CPU time out of every 8 ms.
The continuous CPU reservation is also a basic reservation,
but the basic reservation is not a continuous reservation.

Hard reservations limit the CPU usage of a virtual pro-
cessor to at most the reserved amount of time, as well as
guaranteeing that it will be able to run at at least that rate
and granularity. Hard reservations are useful for applica-
tions that cannot opportunistically take advantage of extra
CPU time; for example, those that display video frames at
a particular rate. They are also useful for limiting the CPU
usage of applications that were written to use the full CPU
bandwidth provided by a processor slower than the one on
which they are currently running. For example, older CPU-
bound games have been run successfully on fast machines
by limiting their utilization to a fraction of the full processor
bandwidth.

Soft reservations may receive extra CPU time on a best-
effort basis. They are useful for applications that can use
extra CPU time to provide added value. However, no extra
time is guaranteed. We have borrowed this usage of the
terms hard and soft from the work on portable Resource
Kernels [16].

Uniformly Slower Processors — A uniformly slower
processor (USP) is the guarantee provided by schedulers
such as BSS-I [13]. A USP guarantee has the form RESU

r, where r is the fraction of the overall CPU bandwidth
allocated to the USP. The granularity over which the re-
served fraction of the CPU is to be received is not part of the
guarantee, and must be specified dynamically. The guaran-
tee provided by a uniformly slower processor is as follows.
Given a virtual processor with guarantee RESU r, for any
two consecutive deadlines dn and dn+1 that the child sched-
uler at the other end of the VP notifies the USP scheduler
of, the VP is guaranteed to receive r(dn+1 − dn) units of
CPU time during the time interval [dn, dn+1].

Proportional Share — Proportional share (PS) sched-
ulers are quantum-based approximations of fair schedulers.
Some PS schedulers can guarantee that during any time in-
terval of length t, a thread with a share s of the total proces-
sor bandwidth will receive at least st− δ units of processor
time, where δ is an error term that depends on the particu-
lar scheduling algorithm. This guarantee is called “propor-
tional share bounded error” and has the type PSBE s, δ. For
the earliest eligible virtual deadline first (EEVDF) sched-
uler [22], δ is the length of the scheduling quantum. For the
start-time fair queuing (SFQ) scheduler [8], δ is more com-
plicated to compute: it is a function of the quantum size,
the number of threads being scheduled by the SFQ sched-
uler, and the share of a particular thread.

Some proportional share schedulers, such as the lot-
tery scheduler [23], provide no deterministic performance
bound to threads that they schedule. The guarantee given
by this kind of PS scheduler is PS s, where s is the asymp-
totic share that the thread is guaranteed to receive over an
unspecified period of time.

Time Sharing — In general, time-sharing schedulers
such as those found in Linux or Windows 2000 make no
particular guarantee to threads they schedule. They provide

4

Scheduler(s) Guarantee conversion(s)
fixed priority any 7→ (any, NULL+)
join see below
limit RESBS 7→ RESBH

proportional share PS 7→ PS+, PSBE 7→ PSBE+,
RESU 7→ PSBE+

CPU reservation ALL 7→ RESBH+, RESU 7→ RESBH+

time sharing NULL 7→ NULL+

BSS-I, PShED ALL 7→ RESU+, RESU 7→ RESU+

CBS ALL 7→ RESBH+, RESU 7→ RESBH+

EEVDF ALL 7→ PSBE+, RESU 7→ PSBE+

Linux, Win 2000 NULL 7→ NULL+

Lottery, Stride PS 7→ PS+, RESU 7→ PS+

Resource Kernel ALL 7→ (RESBS+, RESBH+),
RESU 7→ (RESBS+, RESBH+)

Rialto, Rialto/NT ALL 7→ RESCS+, RESU 7→ RESCS+

SFQ PS 7→ PS+, PSBE 7→ PSBE+,
RESU 7→ PSBE+

SFS PS+ 7→ PS+, RESU+ 7→ PS+

Spring ALL 7→ RESBH+, RESU 7→ RESBH+

TBS ALL 7→ RESBS+, RESU 7→ RESBS+

Table 1. Guarantees required and provided by
multimedia scheduling algorithms. Notation
used in this table is explained in Section 5.1.

the NULL guarantee, indicating strictly best-effort schedul-
ing.

The set of guarantees presented in this paper is by no
means complete. Rather, it covers an interesting and viable
set of guarantees made by multimedia schedulers that have
been presented in the literature and that, together, can be
used to meet the scheduling needs of many kinds of multi-
media applications.

5. Converting Between Guarantees
Recall that from the point of view of guarantees, the pur-
pose of the scheduling hierarchy is to convert the ALL guar-
antee(s) into the set of guarantees required by users, appli-
cations, and other resource consumers. In this section we
describe the two ways that guarantees can be converted into
other guarantees. First, each scheduler in the hierarchy re-
quires a guarantee, and provides guarantees to other schedu-
lable entities through virtual processors. Second, guarantee
rewrite rules can be used to convert guarantees without us-
ing a scheduler to perform the conversion.

5.1. Converting Guarantees Using Schedulers
Table 1 shows a number of schedulers and what guaran-
tee(s) are acceptable to them and can be provided by them.
The underlying function of these rules is to provide a com-
mon framework for the schedulability analyses that have
been developed along with the scheduling algorithms.

The top six schedulers in Table 1 have been implemented
in HLS; the remaining schedulers have been described in
the literature. The table is to be interpreted as follows:

• A 7→ B+ means that a scheduler can convert a guaran-
tee with type A into multiple guarantees of type B. A is
the weakest guarantee that is acceptable to the sched-
uler when used to provide guarantees of type B. Im-
plicitly, any guarantee that can be converted into guar-
antee A using one of the conversions in Section 5.2 is
also acceptable.

• The identifier “any” indicates a variable that may
be bound to any guarantee. So, the fixed priority
scheduler passes whatever guarantee it is given to its
highest-priority virtual processor while providing mul-
tiple NULL guarantees to lower-priority VPs.

• Whenever a scheduler makes use of the RESU guar-
antee, amounts of CPU time in the guarantees that it
provides must be interpreted as being in the domain
of the uniformly slower processor. For example, if
a reservation scheduler that receives a guarantee of
RESU 0.5 provides a reservation of RESBS 10, 20, the
thread that receives that reservation will only have 25%
of the total CPU bandwidth available to it, because
0.5(10/20) = 0.25.

The remainder of this section will discuss and justify the
guarantee conversions listed in Table 1.

Fixed Priority — A preemptive, fixed-priority sched-
uler that uses admission control to schedule only one vir-
tual processor at each priority gives no guarantee of its own:
rather, it passes whatever guarantee it receives to its highest-
priority child. All other children receive the NULL guaran-
tee. This logic can be seen to be correct by observing that
no other virtual processor can create scheduling contention
for the highest-priority VP when a preemptive fixed-priority
scheduler is in use. No guarantee can be given to lower-
priority VPs because the one with the highest priority may
be CPU bound.

If high-priority VPs were known to not use the full CPU
bandwidth we could reason about the guarantees given to
lower-priority VPs by a fixed-priority scheduler. However,
this would break a desirable property of HLS: that the guar-
antee given to a scheduler depends only on schedulers on
the path between it and the root of the hierarchy.

Join — Most uniprocessor schedulers register a single
virtual processor with their parent, and multiplex CPU time
received from that virtual processor among several children.
The join scheduler performs the opposite function: it regis-
ters multiple virtual processors with its parents and sched-
ules its child VP any time any of the parents allocates a
physical processor to it. This allows the scheduling hier-
archy to be generalized to a directed acyclic graph. Join
schedulers are useful for directing the flow of idle time from
some part of the scheduling hierarchy to a virtual processor
that can make use of it. For this reason, a join scheduler will
usually be used to join a guarantee such as a CPU reserva-

5

tion with a NULL guarantee since slack time in the schedule
is, by definition, not guaranteed.

An entity scheduled by a join scheduler may pick any
one of the join scheduler’s parent guarantees to take, with
the restriction that if the guarantee that it picks is a hard
guarantee, it must be converted into the corresponding soft
guarantee. To see that this is correct, notice that a join
scheduler cannot give a virtual processor any less CPU time
than the VP would have received if it were directly given
any of the join scheduler’s parent guarantees. However, the
join scheduler may cause a virtual processor to receive ad-
ditional CPU time, meaning that it cannot give a hard guar-
antee.

Limit — Limit schedulers can be used to convert a soft
guarantee into a hard one. A limit scheduler that is given
a guarantee of a basic, soft CPU reservation would, like
a reservation scheduler, keep track of the amount of CPU
time that it has allocated to its (single) child virtual proces-
sor during each period. However, when its child is about
to receive more than the guaranteed amount, it releases the
processor and does not request it again until the start of the
next period.

Proportional Share — The PS scheduler that was im-
plemented for HLS implements the start-time fair queuing
(SFQ) [8] algorithm with a warp extension similar to the
one in BVT [6]. When the warp of all virtual processors is
zero, it behaves as an SFQ scheduler. Goyal et al. showed
that an SFQ scheduler provides fair resource allocation in
a hierarchical scheduling environment where it does not re-
ceive the full CPU bandwidth. Therefore, the conversion
PS 7→ PS+ is justified. It was also shown that when an
SFQ scheduler is scheduled by a fluctuation constrained
(FC) server [12], then the entities scheduled by the SFQ
scheduler are also FC servers. An FC server is character-
ized by two parameters (s, δ). Informally, s is the average
share guaranteed to a virtual processor and δ is the furthest
behind the average share it may fall. In other words, the
FC server constrains the deviation from the average service
rate. This is precisely what the PSBE guarantee does, and
consequently an FC server with parameters (s, δ) is equiva-
lent to the guarantee PSBE s, δ.

Therefore, an SFQ scheduler that is given a PSBE guar-
antee can also provide this guarantee to its children. We
present a version of the formula from Goyal et al. [8] that is
simplified to reflect the absence of variable-length schedul-
ing quanta in a general-purpose OS. Let q be the sched-
uler quantum size and T be the total number of threads
being scheduled by an SFQ scheduler, with rf being the
weight (the fraction of the total number of shares) assigned
to thread f . Then, if an SFQ scheduler is scheduled by an
FC server with parameters (s, δ), each of the threads sched-
uled by the SFQ scheduler is also a FC server with parame-
ters calculated as follows:

(

srf , rf

Tq

s
+ rf

δ

s
+ q

)

The utility of this result will become clear in Section 5.2
where we show that it is possible to convert a proportional
share bounded error guarantee into a CPU reservation and
vice-versa.

Table 1 shows that proportional share schedulers may
make use of the uniformly slower processor guarantee. De-
spite the fact that SFQ and the other PS schedulers listed
below do not have any notion of deadlines, we believe (but
have not proved) this can be accomplished by treating the
end of each scheduling quantum as a deadline.

CPU Reservations — The CPU reservation scheduler
that was implemented for HLS must receive the guarantee
ALL or RESU, and provides basic, hard reservations. It is
capable of making use of a uniformly slower processor be-
cause it has information about deadlines available to it at
run time.

Time Sharing — Since a time-sharing scheduler does
not make any guarantee to entities that it schedules, it can
make use of any guarantee. More precisely, it requires a
NULL guarantee, to which any other guarantee may be triv-
ially converted.

Schedulers From the Literature — This section ex-
plains and justifies the guarantee conversions for the sched-
ulers listed in the bottom part of Table 1.

The BSS-I [13] and PShED [14] schedulers provide uni-
formly slower processors to other schedulers. Any sched-
uler that has a run-time representation of its deadlines may
use a uniformly slower processor.

The constant bandwidth server (CBS) [1] provides the
same scheduling behavior as a basic, hard reservation.
Since it is deadline based, it can be scheduled by a uni-
formly slower processor.

The earliest eligible virtual deadline first (EEVDF) al-
gorithm [22] was shown to provide proportional share
scheduling with bounded error. It has not been shown to
work when given less than the full processor bandwidth.

The Linux and Windows 2000 time-sharing schedulers
are typical in that they provide no guarantees.

Lottery and Stride scheduling [23] provide proportional
share resource allocation but do not bound allocation error.
They have been shown to work correctly in a hierarchical
environment.

The scheduler in the portable Resource Kernel [16] was
designed to be run as a root scheduler, and can provide both
hard and soft CPU reservations. Although it is based on
rate monotonic scheduling, it must have an internal repre-
sentation of task deadlines in order to replenish application
budgets. Therefore, it could be adapted to be scheduled us-
ing a uniformly slower processor.

Rialto [11] and Rialto/NT [9] are reservation schedulers.
They could be adapted to be scheduled using a USP because
they have an internal representation of their deadlines.

SFS [3] is a multiprocessor proportional share scheduler.
It does not provide bounded allocation error to entities that
it schedules.

6

ALL t t f t f t t t t
RESU f t f f f f f t t
RESBH f f t t f, 2 t, 1 t, 4 t, 5 t
RESBS f f f t f, 2 t, 1 t, 4 t, 5 t
RESCH f f t t t t t, 3 t, 5 t
RESCS f f f t f t t, 3 t, 5 t
PSBE f f f t, 6 f t, 6 t t t
PS f f f f f f f t t
NULL f f f f f f f f t

7→ A
L

L

R
E

S
U

R
E

S
B

H

R
E

S
B

S

R
E

S
C

H

R
E

S
C

S

P
S

B
E

P
S

N
U

L
L

Table 2. Guarantee rewrite matrix

The Spring operating system [20] uses a deadline-based
real-time scheduler to provide hard real-time guarantees to
tasks that it schedules. Since it is deadline-based, it can
make use of a USP.

The total bandwidth server (TBS) [19] provides soft
CPU reservations: it guarantees that a minimum fraction
of the total processor bandwidth will be available to entities
that it schedules, but it can also take advantage of slack time
in the schedule to provide extra CPU time. It is deadline-
based, and consequently can be scheduled using a USP.

5.2. Converting Guarantees Using Rewrite
Rules

Rewrite rules exploit the underlying similarities between
different kinds of soft real-time scheduling. For example,
it is valid to convert any CPU reservation with amount x
and period y to the guarantee PS x/y. This conversion
means that any pattern of processor allocation that meets
the requirements for being a CPU reservation also meets
the requirements for being a PS guarantee. Clearly, the re-
verse conversion cannot be performed: a fixed fraction of
the CPU over an unspecified time interval is not, in general,
equivalent to any particular CPU reservation.

Table 2 shows which guarantees can be converted into
which others using rewrite rules. Characters in the matrix
indicate whether the guarantees listed on the left can be con-
verted to the guarantees listed on the bottom. Feasible con-
versions are indicated by “t”, while impossible conversions
are indicated by “f”. When a conversion or lack of con-
version is non-trivial, the accompanying number refers to a
theorem from this section. Length restrictions preclude in-
cluding proofs of the theorems; they can be found in [17,
Sec. 5.3.2].

The following theorem shows that basic CPU reserva-
tions can be converted into continuous CPU reservations.

Theorem 1. The guarantees RESBS x, y and RESBH x, y
can each be converted into the guarantee RESCS x, (2y −
x + c) for any c ≥ 0.

The following theorem proves that it is not possible to
convert an arbitrary basic CPU reservation into a continu-
ous, hard CPU reservation. The only basic CPU reservation
that is also a hard, continuous CPU reservation is the trivial
basic reservation that is equivalent to ALL.

Theorem 2. Neither RESBS x, y nor RESBH x, y can be
converted into a continuous, hard CPU reservation unless
x = y.

The following theorem establishes a correspondence be-
tween continuous CPU reservations and proportional share
guarantees with bounded error.

Theorem 3. The guarantees RESCH x, y or RESCS x, y
may be converted to the guarantee PSBE x

y
, x

y
(y − x).

The following theorem establishes a correspondence be-
tween basic CPU reservations and proportional share guar-
antees with bounded error.

Theorem 4. The guarantees RESBH x, y or RESBS x, y
may be converted to the guarantee PSBE x

y
, 2x

y
(y − x).

The next theorem proves that any CPU reservation may
be converted into a proportional share guarantee.

Theorem 5. Any CPU reservation, whether hard or soft,
basic or continuous, with amount x and period y may be
converted into the guarantee PS x/y.

The following theorem was motivated by an observation
by Stoica et al. [21], who said it is possible to provide reser-
vation semantics using a proportional share scheduler that
has bounded allocation error.

Theorem 6. The guarantee PSBE s, δ can, for any y ≥ δ
s

,
be converted into the guarantee RESCS (ys−δ), y or RESBS

(ys − δ), y.

5.3. Revisiting the Example
Section 2.2 presented an example scheduling hierarchy. We
now demonstrate how to use the procedure from Section 3.3
to derive the guarantee provided by each virtual processor
in that example. The results are shown in Figure 3.

By assumption, the fixed-priority scheduler (FP) at the
root of the hierarchy receives the guarantee ALL. It passes
this guarantee unchanged to its highest priority child virtual
processor, the CPU reservation scheduler (RES). FP gives
the guarantee NULL to its lower-priority virtual processor,
which is used to schedule the join scheduler.

RES requires the guarantee ALL, and uses it to provide
basic, hard CPU reservations. The video player applica-
tion requires 5 ms of CPU time to render each frame and
it must display 30 frames per second; therefore, it has been
assigned a guarantee of RESBH 5, 33. The join scheduler (J)
is scheduled both by a CPU reservation and by FP. Accord-
ing to the rule in Section 5.2 it may provide either guarantee

7

PSBE 0.1, 22

FP

RES

J

PS

Video
Player

Voice
Recognition

Word
Processor

PSBE 0.4, 58

RESBS 10, 20
PSBE 0.5, 10

NULL

ALL

RESBH 5, 33

ALL

RESBH 10, 20

Figure 3. The hierarchy from Figure 1 with
guarantees added

that is provided to it as long as any guarantees about upper
bounds are dropped. Therefore, the hard CPU reservation is
converted to a soft CPU reservation.

The proportional share scheduler (PS) is not directly
compatible with a CPU reservation, so we use Theorem 4 to
convert it into a PSBE guarantee. Given this guarantee and
assuming that its quantum size is 10 ms, the proportional
share equations in Section 5.1 tell us that PS can provide
the guarantees PSBE 0.1, 22 and PSBE 0.4, 58; these are
used to schedule the word processor and voice recognition
applications.

5.4. Schedulers as Components
The previous section illustrated the use of a join scheduler
to direct the allocation of CPU time not used by a reser-
vation scheduler in order to turn a hard CPU reservation
into a soft CPU reservation. This is a generally useful tech-
nique that can be used to build complex scheduling behav-
iors from simple components. For example, CPU time not
used by a reservation scheduler can be allocated to threads
using a round-robin scheduler. If the threads also have a
CPU reservation, the aggregate scheduling behavior is that
of a soft reservation. Thus, the behavior of a hard/soft
reservation scheduler such as the one in the portable Re-
source Kernel [16] can be obtained without writing any ad-
ditional code. Furthermore, the new composite scheduler
is extremely flexible—if it becomes desirable to replace the
round-robin scheduler with a proportional share scheduler,
this can be done with very little effort. In fact, in our im-
plementation it can be done without even shutting down the
system.

Another complex scheduler that can be easily created
with HLS is one that provides CPU service classes [4],
which were designed to support soft real-time applications
such as MPEG decoders whose worst-cast execution times

*

NULLRESBH 1, 10

* *

ALL

10, 33

5, 33
RESBS

RESBH

5, 33
RESBS

ALL

RESBH
5, 33

NULL

J3

OVR

FP

TS

T1

T2 T3

T4

RES

J2

Figure 4. Scheduling hierarchy implementing
CPU service classes

are considerably larger than their average case execution
times. Each such application is given a CPU reservation
corresponding to its expected requirement. In addition, sev-
eral applications share an overrun partition—an extra CPU
reservation that is statistically multiplexed among unpre-
dictable applications.

Figure 4 illustrates a hierarchy that implements CPU ser-
vice classes using HLS. A hard reservation scheduler (RES)
provides CPU reservations to threads T2 and T3 through
the join schedulers J2 and J3. In addition, it gives a CPU
reservation to the overrun scheduler (OVR), which sched-
ules threads that have exhausted their reservation budgets
in a round-robin manner. Again, the advantage of using
HLS is reduced implementation time and increased flexi-
bility. If a researcher hypothesized that OVR should be an
EDF scheduler rather than round-robin, the change could be
made by modifying or replacing OVR, as opposed to chang-
ing a complex, monolithic scheduler. Note that since HLS
guarantees are deterministic and service classes are prob-
abilistic, the guarantee received by each application is un-
changed except that it is soft rather than hard.

6. Runtime Support for HLS
We now change focus from guarantees and the composition
of schedulers to our implementation of an infrastructure for
supporting HLS in the Windows 2000 kernel; it is depicted
in Figure 5. Schedulers are loaded into the kernel using
the facilities used to dynamically load other kinds of device
drivers. Each scheduler shares one or more virtual proces-
sors with its parent(s) and children. Virtual processors rep-
resent the potential for allocation of a physical processor,
and are a generalization of scheduler activations [2] that
support a hierarchy of arbitrary depth. The important prop-
erty of the scheduler activation interface is that it permits

8

applications

unblock, create, delete

RES TS

FP

thread
dispatches

notifications: block,

kernel

user−level

T1 T2 T3

HSI

HLSCtl()

timer
expirations hierarchy

scheduling

threads:

Figure 5. Structure of HLS runtime support

Notification source Notification name
RegisterVP
UnregisterVP

child VP Request
VP Release
Msg
VP Grantparent
VP Revoke
Init
Deinitinfrastructure
TimerCallback
CheckInvar

Table 3. Loadable scheduler entry points

HLS schedulers to maintain the invariant that they always
know the number of physical processors that they control.

OS events such as timer expirations and thread creation,
blocking, and unblocking are indicated by dotted arrows;
they are converted to HLS notifications (solid arrows) and
delivered to schedulers in the hierarchy by the hierarchical
scheduler infrastructure (HSI). Notifications were imple-
mented by modifying around 40 code sites in the Windows
2000 kernel; most of these modifications involved intercept-
ing thread events and suppressing the native Windows 2000
scheduler. Decisions made by loadable schedulers are used
by the HSI to dispatch threads. Finally, application threads
can send messages to schedulers (for example, to change
their scheduling parameters) using the HLSCtl interface
that we implemented by adding a new Windows 2000 sys-
tem call. The complete set of scheduler notifications is
shown in Table 3.

We have made additional improvements to the scheduler
programming model by isolating loadable schedulers from
internal OS complexities. Length restrictions allow us to
describe them only briefly. First, HLS has just three thread
states while Windows 2000 has seven—the remaining four
have to be taken into account by the native Windows 2000
scheduler but do not really matter for scheduling purposes.

Operation µs
create scheduler instance 25.0±1.63
destroy scheduler instance 18.0±0.0518
begin CPU reservation 15.4±0.0311
end CPU reservation 13.5±0.0272

Table 4. Time taken to perform representative
HLS operations from user level

Second, the programming environment natively supported
by a symmetric multiprocessor is difficult to use. An ar-
bitrary number of scheduling events may happen between
when a processor signals an interprocessor interrupt and
when the target processor executes the handler for this in-
terrupt. This means that if a scheduler attempts to migrate
a thread from one processor to another, the decision may
no longer be valid by the time the migration happens. We
have implemented a software layer above this difficult inter-
face that makes thread migration and other multiprocessor
scheduling activities appear to happen atomically.

Schedulers that we have implemented include a time-
sharing scheduler, a fixed-priority scheduler, a proportional
share scheduler, a join scheduler, and a reservation sched-
uler. An important goal of HLS was to improve the pro-
gramming model for scheduler implementation by (1) pro-
viding schedulers with useful, structured information about
operating system events, and (2) abstracting away OS-
specific details that do not concern the scheduler. We be-
lieve that we have successfully accomplished this goal: us-
ing our infrastructure it took one of us two days to com-
pletely implement an EDF-based reservation scheduler and
a single day to implement a proportional share scheduler.

7. Performance of HLS
Numbers presented in this section were taken on a dual
500 MHz Pentium III that was booted in single-processor
mode.

7.1. Micro-benchmarks
Table 4 shows the amount of time taken to perform sev-
eral basic HLS operations from a user-level thread. In other
words, these times are representative of the actual costs that
applications would incur while using our system. All such
operations take less than 30 µs, including simple operations
such as creating a new scheduler and placing it in the hierar-
chy, and more complex operations such as beginning a CPU
reservation for a thread, which involves moving the thread
from a time-sharing scheduler to a reservation scheduler and
requesting a new reservation from that scheduler, triggering
its schedulability analysis routine. Confidence intervals in
Table 4 were calculated at 95%.

The median context switch time between threads in the
same address space for the released version of the native

9

Windows 2000 scheduler is 7.10 µs. The median context
switch time for threads scheduled by the HLS time-sharing
scheduler is 11.7 µs. Therefore, on a machine that performs
a context switch every millisecond HLS adds about 0.5%
overhead. Each additional level of the scheduling hierarchy
that must be traversed during a context switch adds roughly
0.96 µs to the context switch time. Although we consider
this to be acceptable, we did not put a lot of effort into op-
timizing the HLS implementation and we hypothesize that
context switches within a single loadable scheduler can be
made to be as fast, or nearly as fast, as context switches for
the released version of Windows 2000.

7.2. An Application Test
Time-sharing schedulers on general-purpose operating sys-
tems can effectively schedule a single real-time application
along with interactive and background tasks by running the
real-time task at the highest priority. However, this sim-
ple method fails when the real-time application contains
CPU-bound threads. The frame rendering loops in virtual
environments and simulation-based games are CPU-bound
because they are designed to adaptively provide as many
frames per second (FPS) as possible; this makes it effec-
tively impossible for them to gracefully share the processor
with background applications when scheduled by a tradi-
tional time-sharing scheduler.

To illustrate this problem and its solution, and also to
verify that HLS actually provides the scheduling properties
that it claims to provide, we performed an experiment using
a synthetic CPU-bound real-time application. We used a
synthetic application because it is self-monitoring and can
detect and record gaps in its execution, allowing the success
or failure of a particular run to be accurately ascertained.

The “virtual environment” application used in this exper-
iment requires 10 ms of CPU time to render a single frame.
The average frame rate must not fall below 30 FPS and fur-
thermore, there must not be a gap of more than 33 ms be-
tween any two frames. If such a gap occurs, the test appli-
cation registers the event as a deadline miss. The practical
reason for this requirement is that in addition to degrad-
ing the visual experience, lag in virtual environments and
games can lead to discomfort and motion sickness. Frame
rates higher than 30 FPS are acceptable and desirable. Since
each frame takes 10 ms to render, the hardware can render
at most 100 FPS.

Table 5 shows the results of concurrently running the
real-time application and a background thread. The back-
ground thread always ran at the default time-sharing prior-
ity and represents a system task such as a content indexer,
a disk defragmenter, or a backup application. Each row in
the table describes the outcome of a single 30-second run.
The percentage of the CPU received by the real-time ap-
plication is %a and the average number of frames per sec-
ond produced by the real-time application is FPS (which is
equal to the percentage because it takes 10 ms, or 1% of

app. guarantee %a FPS misses %b

RESBH 10 33 32.6 32.6 0 67.3
RESBS 10 33 67.3 67.3 0 32.6
NULL (high pri.) 96.7 96.7 6 3.26
NULL (default pri.) 49.9 49.9 290 50.0
NULL (low pri.) 3.11 3.11 985 96.9

Table 5. Performance of a CPU-bound real-
time application

1 s, to produce each frame). The number of times the real-
time application failed to produce a frame on time during
the experiment is listed under “misses” and finally, the total
percentage of the CPU received by the background thread
is %b.

The top row in the table shows system behavior when
the real-time application is given a hard CPU reservation:
it achieves slightly more than the minimum required frame
rate and misses no deadlines. Given a soft CPU reservation
(with a join scheduler, using the method we described in
Section 5.4), the real-time application and the background
thread share unreserved CPU time; this is shown in the sec-
ond row of the table. The remaining three rows show what
happens when the real-time application is not given a CPU
reservation: both the real-time and background tasks are
scheduled by the time-sharing scheduler. When the real-
time application is scheduled at a higher priority than the
background thread, the background thread is not able to
make much progress: it runs only occasionally.1 Although
the background thread only received about 3% of the CPU
time during this test, it still caused the real-time applica-
tion to miss six deadlines—this is because the scheduling
quantum of the time-sharing scheduler is longer than the
period of the real-time task. When the real-time applica-
tion is run at the same priority as the background thread it
is unable to meet its deadlines even though it is receiving
more than enough processor time: again, the time-sharing
scheduler time-slices between the two threads at a granular-
ity too coarse to meet the scheduling needs of the real-time
application. When the real-time application is run at a prior-
ity lower than that of the background thread, it is scheduled
only occasionally and provides few frames.

This experiment has shown that HLS is capable of pro-
viding guaranteed scheduling behavior to a real-time appli-
cation. It has also shown why diverse scheduling support
can be useful: only the soft CPU reservation met our goal
of guaranteeing a minimum amount of CPU time to a real-
time application while still allowing it to opportunistically
use free time in the schedule.

1The background application runs at all only because the HLS time-
sharing scheduler (like the native Windows 2000 scheduler) attempts to
avoid unbounded priority inversion by not completely starving threads
even in the presence of a higher-priority thread that is CPU bound.

10

8. How to Deploy HLS
HLS could be deployed in a free or commercial operating
system as follows. First, the shipped version of the OS
should support a default scheduling behavior that meets the
needs of the bulk of its users. For example, in Windows
2000 or Linux the default scheduler for every thread should
be a time-sharing scheduler. Real-time applications could
then be moved to an appropriate scheduler as needed.

Second, users whose needs are not met by the default
scheduling hierarchy can be supported by shipping, with the
operating system, a library of schedulers and an API for ma-
nipulating them. These schedulers might include different
kinds of real-time schedulers as well as gang schedulers and
cluster co-schedulers. We hypothesize that the requirements
of almost all users could be met if they were allowed to cre-
ate hierarchies using a well-chosen handful of schedulers.

Third, an API for writing new schedulers should be pro-
vided. This would benefit researchers and sophisticated
users willing to pay the cost of developing new schedulers.
Appendix B of [17] describes such an API.

An obstacle to widespread adoption of real-time schedul-
ing techniques in general-purpose operating systems is the
fact that these systems can complicate developers’ tasks by
increasing the number of low-level APIs that they must un-
derstand and use in order to get work done. As a partial so-
lution, we have proposed the CPU Resource Manager [18],
a middleware application that will permit legacy applica-
tions to benefit from real-time scheduling techniques by au-
tomatically providing real-time guarantees to applications
in accordance with application requirements and user pref-
erences.

9. Related Work
Although many recently proposed methods for schedul-
ing multimedia applications in open systems employ hi-
erarchical scheduling, as far as we know HLS is the first
framework permitting reasoning about general scheduling
hierarchies—those that allow user-specified schedulers at
all points within the scheduling hierarchy.

RED-Linux [24] characterizes each task as a 4-tuple con-
sisting of priority, start time, finish time, and budget. Sched-
ulers are functions from task tuples to effective priorities;
the system always schedules the task with the highest ef-
fective priority. This mechanism is flexible and permits
many scheduling behaviors to be easily expressed. How-
ever, it does not provide a means for guaranteeing a partic-
ular scheduling behavior to an application when different
scheduling paradigms are used simultaneously (although
such means could be layered on top of RED-Linux).

Hierarchical start-time fair queuing [8] provides hierar-
chical isolation and guaranteed latency and throughput to
applications at the leaves of the scheduling hierarchy, but
only when all schedulers in the hierarchy use the same al-
gorithm.

BSS-I [13] and PShED [14] implement what we have
been calling uniformly slower processors. They permit
arbitrary scheduling algorithms at the second level of the
scheduling hierarchy to meet the timing constraints of
multi-task applications in the case that all deadlines can
be made dynamically available to the EDF-based sched-
uler at the root of the hierarchy. The Open Environment
for real-time applications [5] also uses an EDF scheduler at
the root of the hierarchy to allocate processor time to fixed-
bandwidth application schedulers. In addition, it supports
guaranteed schedulability in the presence of globally shared
resources—something that HLS does not currently address.
HLS differs from these systems in that it does not require
a specific scheduler at the root of the hierarchy and (de-
pending on what scheduling algorithms are used) does not
necessarily require information about individual deadlines
at run time.

The static partition and bounded-delay resource partition
models, developed by Mok et al. [15], provide a frame-
work for reasoning about hierarchical CPU schedulers. Like
HLS, they separate the properties of real-time schedules
from the algorithms that provide them. HLS differs from
these models in the following ways: it does not constrain
the choice of top-level scheduler, it permits more than two
levels in the scheduling hierarchy, it permits selective allo-
cation of slack time in the schedule, and it has been shown
to map to an efficient implementation—these are all impor-
tant properties for dealing with the diverse requirements and
workloads that can be placed upon general-purpose operat-
ing systems. However, it seems likely that the bounded-
delay model could be usefully incorporated into HLS.

Finally, CPU inheritance scheduling [7] supports a hi-
erarchy of arbitrary schedulers, but does not provide any
facilities for composing schedulers in a way that provides
guaranteed scheduling behavior to applications.

10. Conclusions
HLS provides a pragmatic framework for flexible real-time
scheduling: it builds upon existing scheduling algorithms
and their associated analyses, and we have shown that it
can be efficiently supported by a general-purpose operating
system.

The first principal contribution of this work has been to
show that it is possible to analyze arbitrary hierarchies of
soft real-time schedulers in terms of the deterministic guar-
antee provided along each edge in the hierarchy. The sys-
tem of guarantees that we have developed exploits the un-
derlying unity behind the scheduling behaviors provided by
a broad class of multimedia scheduling algorithms. This
system is useful because: it separates abstract scheduling
behaviors from the algorithms that provide them, it shows
which guarantees are equivalent to which other guarantees,
and it permits guarantees to be made to threads at the leaves
of a scheduling hierarchy. We have also showed that com-

11

plex, idiomatic scheduling behaviors can be constructed us-
ing simple schedulers as components, and we have devel-
oped the join scheduler, which can be used to selectively
direct the flow of idle time through a scheduling hierarchy.

Our second main contribution is the design, implemen-
tation, and performance evaluation of a runtime architec-
ture supporting HLS in the kernel of a multiprocessor op-
erating system. The hierarchical scheduler infrastructure is
based on a novel extension of scheduler activations [2] that
supports a hierarchy of arbitrary depth. It provides a well-
defined scheduling interface, facilitating the implementa-
tion of new schedulers. The scheduler infrastructure allows
loadable schedulers to receive notifications about only the
virtual processor state transitions that concern them, and ab-
stracts away irrelevant low-level details such as extraneous
thread states and a difficult multiprocessor programming
model. Operations on the scheduling hierarchy such as cre-
ating or destroying a scheduler instance, moving a thread
between schedulers, and beginning or ending a CPU reser-
vation can be performed quickly: from user level they all
take less than 30 µs on a 500 MHz Pentium III.

Acknowledgments
The authors would like to thank Chenyang Lu and the
anonymous reviewers for their helpful comments.

References
[1] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applica-

tions in hard real-time systems. In Proc. of the 19th IEEE Real-Time
Systems Symposium, pages 4–13, Madrid, Spain, December 1998.

[2] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. Scheduler Activations: Effective kernel support for
the user-level management of parallelism. In Proc. of the 13th ACM
Symposium on Operating Systems Principles, pages 95–109, October
1991.

[3] Abhishek Chandra, Micah Adler, Pawan Goyal, and Prashant
Shenoy. Surplus Fair Scheduling: A proportional-share CPU
scheduling algorithm for symmetric multiprocessors. In Proc. of the
4th Symposium on Operating Systems Design and Implementation,
pages 45–58, San Diego, CA, October 2000.

[4] Hao-hua Chu and Klara Nahrstedt. CPU service classes for mul-
timedia applications. In Proc. of the 6th IEEE International Conf.
on Multimedia Computing and Systems, pages 2–11, Florence, Italy,
June 1999.

[5] Zhong Deng, Jane W.-S. Liu, Lynn Zhang, Seri Mouna, and Alban
Frei. An open environment for real-time applications. Real-Time
Systems Journal, 16(2/3):165–185, May 1999.

[6] Kenneth J. Duda and David C. Cheriton. Borrowed-Virtual-Time
(BVT) scheduling: supporting latency-sensitive threads in a general-
purpose scheduler. In Proc. of the 17th ACM Symposium on Operat-
ing Systems Principles, Kiawah Island, SC, December 1999.

[7] Bryan Ford and Sai Susarla. CPU inheritance scheduling. In Proc.
of the 2nd Symposium on Operating Systems Design and Implemen-
tation, pages 91–105, Seattle, WA, October 1996.

[8] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A hierarchical
CPU scheduler for multimedia operating systems. In Proc. of the
2nd Symposium on Operating Systems Design and Implementation,
pages 107–121, Seattle, WA, October 1996.

[9] Michael B. Jones and John Regehr. CPU Reservations and Time
Constraints: Implementation experience on Windows NT. In Proc.
of the 3rd USENIX Windows NT Symposium, pages 93–102, Seattle,
WA, July 1999.

[10] Michael B. Jones, John Regehr, and Stefan Saroiu. Two case studies
in predictable application scheduling using Rialto/NT. In Proc. of
the 7th Real-Time Technology and Applications Symposium (RTAS
2001), pages 157–164, Taipei, Taiwan, May 30–June 1 2001.

[11] Michael B. Jones, Daniela Roşu, and Marcel-Cătălin Roşu. CPU
Reservations and Time Constraints: Efficient, predictable scheduling
of independent activities. In Proc. of the 16th ACM Symposium on
Operating Systems Principles, pages 198–211, Saint-Malô, France,
October 1997.

[12] Kam Lee. Performance bounds in communication networks with
variable-rate links. In Proc. of the ACM SIGCOMM Conf. on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communication, pages 126–136, Cambridge, MA, August 1995.

[13] Giuseppe Lipari and Sanjoy K. Baruah. Efficient scheduling of real-
time multi-task applications in dynamic systems. In Proc. of the
6th IEEE Real-Time Technology and Applications Symposium, pages
166–175, Washington DC, May 2000.

[14] Giuseppe Lipari, John Carpenter, and Sanjoy K. Baruah. A frame-
work for achieving inter-application isolation in multiprogrammed
hard real-time environments. In Proc. of the 21st IEEE Real-Time
Systems Symposium, pages 217–226, Orlando FL, November 2000.

[15] Aloysius K. Mok, Xiang Feng, and Deji Chen. Resource partition
for real-time systems. In Proc. of the 7th Real-Time Technology and
Applications Symposium (RTAS 2001), pages 75–84, Taipei, Taiwan,
May 30–June 1 2001.

[16] Shuichi Oikawa and Ragunathan Rajkumar. Portable RK: A portable
resource kernel for guaranteed and enforced timing behavior. In
Proc. of the 5th IEEE Real-Time Technology and Applications Sym-
posium, pages 111–120, Vancouver, Canada, June 1999.

[17] John Regehr. Using Hierarchical Scheduling to Support Soft Real-
Time Applications on General-Purpose Operating Systems. PhD the-
sis, University of Virginia, May 2001.

[18] John Regehr and Jay Lepreau. The case for using middleware to
manage diverse soft real-time schedulers. In Proc. of the Interna-
tional Workshop on Multimedia Middleware (M3W ’01), pages 23–
27, Ottawa, Canada, October 2001.

[19] Marco Spuri and Giorgio Buttazzo. Scheduling aperiodic tasks in
dynamic priority systems. Real-Time Systems Journal, 10(1):179–
210, 1996.

[20] John A. Stankovic, Krithi Ramamritham, Douglas Niehaus, Marty
Humphrey, and Gary Wallace. The Spring system: Integrated sup-
port for complex real-time systems. Real-Time Systems Journal,
16(2/3):223–251, May 1999.

[21] Ion Stoica, Hussein Abdel-Wahab, and Kevin Jeffay. On the duality
between resource reservation and proportional share resource alloca-
tion. In Proc. of Multimedia Computing and Networking 1997, pages
207–214, San Jose, CA, February 1997.

[22] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah,
Johannes E. Gehrke, and C. Greg Plaxton. A proportional share re-
source allocation algorithm for real-time, time-shared systems. In
Proc. of the 17th IEEE Real-Time Systems Symposium, pages 288–
299, Washington DC, December 1996.

[23] Carl A. Waldspurger and William E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. In Proc. of the
1st Symposium on Operating Systems Design and Implementation,
pages 1–11. USENIX Association, 1994.

[24] Yu-Chung Wang and Kwei-Jay Lin. Implementing a general real-
time scheduling framework in the RED-Linux real-time kernel. In
Proc. of the 20th IEEE Real-Time Systems Symposium, pages 246–
255, Phoenix, AZ, December 1999.

12

