
Stankovic, V., Bessani, A. N., Daidone, A., Gashi, I., Obelheiro, R. R. & Sousa, P. (2009). Enhancing

Fault / Intrusion Tolerance through Design and Configuration Diversity. Paper presented at the 3rd

Workshop on Recent Advances on Intrusion-Tolerant Systems (WRAITS 2009), Jun 2009, Estoril,

Lisbon, Portugal.

City Research Online

Original citation: Stankovic, V., Bessani, A. N., Daidone, A., Gashi, I., Obelheiro, R. R. & Sousa, P.

(2009). Enhancing Fault / Intrusion Tolerance through Design and Configuration Diversity. Paper

presented at the 3rd Workshop on Recent Advances on Intrusion-Tolerant Systems (WRAITS 2009),

Jun 2009, Estoril, Lisbon, Portugal.

Permanent City Research Online URL: http://openaccess.city.ac.uk/525/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. Users may download and/ or print

one copy of any article(s) in City Research Online to facilitate their private study or for non-

commercial research. Users may not engage in further distribution of the material or use it for any

profit-making activities or any commercial gain. All material in City Research Online is checked for

eligibility for copyright before being made available in the live archive. URLs from City Research

Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/2707862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk
http://www.city.ac.uk/

Enhancing Fault / Intrusion Tolerance through
Design and Configuration Diversity

Alysson Bessani1 Alessandro Daidone2 Ilir Gashi3

Rafael Obelheiro4 Paulo Sousa1 Vladimir Stankovic3

1LaSIGE, University of Lisbon, Portugal
2University of Florence, Italy

3Centre for Software Reliability, City University London, UK
4Universidade do Estado de Santa Catarina, Brazil

{bessani,pjsousa}@di.fc.ul.pt, daidone@dsi.unifi.it, {i.gashi, v.stankovic}@city.ac.uk, rro@joinville.udesc.br

Abstract

Fault/intrusion tolerance is usually the only viable way
of improving the system dependability and security in the
presence of continuously evolving threats. Many of the so-
lutions in the literature concern a specific snapshot in the
production or deployment of a fault-tolerant system and no
immediate considerations are made about how the system
should evolve to deal with novel threats. In this paper we
outline and evaluate a set of operating systems’ and appli-
cations’ reconfiguration rules which can be used to modify
the state of a system replica prior to deployment or in be-
tween recoveries, and hence increase the replicas chance of
a longer intrusion-free operation.

1 Introduction

In this paper we will present a set of configuration rules
which are used to diversify the implementation and/or run-
time configuration of operating systems and applications.
These rules can be applied before an operating system or
application is deployed in a system or in between the system
recovery actions. The use of these rules is presented as part
of an architecture which utilises a service we named FOR-
EVER - Fault/intrusiOn REmoVal through Evolution & Re-
covery. The FOREVER service incorporates both reactive
and proactive methods of recovery as well as being adapt-
able to work with traditional fault-tolerant architectures
such as those based on design diversity. This work aims to
offer designers of fault/intrusion tolerant systems guidelines
and heuristics on the architectural evolution of these sys-
tems when they are faced with ever-evolving threats. The
use of various intrusion or fault tolerance mechanisms to en-
hance the resilience of software components against either

malicious or non-malicious faults and failures is well known
in the literature [22, 12], with various architectural and de-
sign approaches proposed [23, 22]. Many of these solutions
concern a specific snapshot of the production or deployment
of a fault-tolerant system. Hence, when a decision is made
to deploy a fault-tolerant diverse system made up of, for ex-
ample, two components, once the two versions of the com-
ponents used in the system are selected, no immediate con-
siderations are made about how the system should evolve.
This becomes especially important to effectively tolerate in-
trusions and other malicious faults since these evolve during
the system life-cycle. Fault/intrusion tolerant systems need
to counteract the evolution of threats and exploits against
a running system. The counter-measures in current prac-
tice are largely reactive - issuance of patches and upgrades
of software components to protect against known faults,
threats and vulnerabilities: but they do not happen in real-
time and the “at-risk-time” may be significantly longer for
the system while a patch is being developed for a publically
known vulnerability. Hence, the designers need proactive
methods to counteract the evolution of faults, threats and
vulnerabilities. With proactive methods design novelty is
used as a defence. The use of a proactive approach is not a
substitute for the reactive methods such as patching and up-
grading, or the fault tolerant architectures proposed in the
literature. It rather aims to complement these approaches
with a more dynamic response to evolving threats and vul-
nerabilities.

The rest of the paper is organised as follows: section 2
briefly describes the FOREVER service; section 3 presents
the configuration diversity rules; section 4 contains evalu-
ation results on the effectiveness of configuration diversity
and other dependability aspects of the FOREVER service;
section 5 contains conclusions and provisions for further
work.

2 Architecture of FOREVER

The main goal of the FOREVER service is to en-
hance the resilience of fault/intrusion-tolerant replicated
systems [5, 15, 13] by allowing these systems to tolerate an
arbitrary number of replica failures without increasing the
total number of replicas. Such an ambitious goal is achieved
through the combination of two important and complemen-
tary mechanisms: recovery and evolution. FOREVER al-
lows an intrusion-tolerant system to recover from past ma-
licious actions/faults, by cleaning the effects of such actions
through periodic and on-demand recoveries that neutralize
the effects of both undetected and detected faults and intru-
sions. Moreover, when FOREVER triggers a recovery of
a certain replica, it not only cleans the effects of previous
malicious actions/faults, but also evolves the replica, mod-
ifying the vulnerabilities that may be exploited by a mali-
cious adversary, by applying a set of configuration diversity
rules (e.g., changes OS access passwords, randomizes open
ports, switches between different authentication methods).
These rules are explained in Section 3.

In order to avoid the possibility that FOREVER itself
becomes a victim of malicious attacks, a fault/intrusion-
tolerant system enhanced with FOREVER should be built
under a hybrid system model and architecture [24] in which
the system is composed of two parts, with distinct proper-
ties and assumptions. These two parts are typically called
payload and wormhole. The fault/intrusion-tolerant appli-
cation (and replication library) runs in the payload part ex-
posed to arbitrary faults and asynchrony. The FOREVER
service runs in the wormhole part that is guaranteed to be
secure and timely by construction.

A more detailed description of the FOREVER service is
available in [21].

3 Diversity aspects

The main resilience goal of using any redundancy in a
software architecture is to minimise the probability that a
failure/intrusion of one of the components will lead to a
system failure/intrusion. To pursue failure/intrusion diver-
sity between components a designer building a fault-tolerant
system can use various forms of diversity:

• simple separation of redundant executions. This
is the weakest form, but it may yet tolerate some
faults/intrusions. In the database research community
it is well known that many bugs in complex, mature
software products are “Heisenbugs” [11], i.e., they
cause apparently non-deterministic failures. When a
database fails, its identical copy may not fail, even with
the same sequence of inputs. The reported phenom-
ena of Heisenbugs that we are aware of concern non-

malicious activity, but may also be applicable for ma-
licious behaviour (e.g., some sort of brute force attack
against a system which only leads to a successful pen-
etration under certain non-deterministic combinations
of behaviours in the running system);

• design diversity, the typical form of parallel redun-
dancy for fault tolerance against design faults (either
accidental or intentional): the multiple replicas of the
system are handled by diverse software components;

• data diversity ([1]): for some systems there may be
a natural redundancy in the input language which al-
lows the demands to the system to be expressed in
syntactically different but logically equivalent forms.
A practical example is the SQL language for databases
where a sequence of one or more SQL statements can
be “rephrased” into a different but logically equivalent
sequence to produce redundant executions (see [9] for
a recent study with SQL database servers);

• configuration diversity (which can be seen as a spe-
cial form of data diversity). Software products of-
ten come with many configuration parameters affect-
ing for example the amount of system resources they
can use (amount of RAM, CPU time), port number
used for communication, authentication method etc.
Given the same software product, varying these pa-
rameters between two installations can produce dif-
ferent implementations of the data and the operation
sequences on them, and thus decrease the risk of the
same bug/vulnerability being triggered in two installa-
tions of the same software.

These precautions can in principle be combined. For in-
stance, data diversity can be used with diverse software
products; diverse software products can be deployed with
configuration diversity of the different software. The choice
will depend on the cost (e.g. purchasing the software),
maintenance costs from increased complexity, time to de-
ployment etc. There has been significant amount of re-
search on the architectures for exploiting design diversity
and experimental studies of evaluating its effectiveness: for
a useful survey of architectural options the reader is referred
to [22]; the assessment issues are discussed in [14]; diverse
intrusion-tolerant architectures are reported in [20]. We al-
ready mentioned earlier in the paper research on data di-
versity as a defence against non-malicious faults [1, 9]; re-
cently there has also been efforts to apply the data diversity
concepts as protection against malicious behavior [17].

In what follows we summarise rules of configuration di-
versity which purport to enhance the resilience of software
in between recoveries. A summary of the rules defined is
given in Table 1. Full details can be found in a technical
report [10], where the types of attacks the rule would help

ID Rule name Design Implications Security CategoryImpl. intrusiveness Client notification required?
1 Password change B Yes C
2.1 Different authentication protocols W, B or G Yes C
2.2 Different Trusted Third Parties W, B or G No C and A
3 Different “factors” in n-factor authentication

methods
W, B or G Yes C

4.1 Address Space Layout Randomisation
(ASLR)

W No I

4.1.1 Pointer obfuscation W No I
4.1.2 Randomisation of global variables and local

variables offsets
W No I

4.2 Address Space Partitioning W, B or G No I
4.3 Stack Frame Padding W, B or G No I
4.4 Basic Block reordering W, B or G No I
5.1 Instruction set randomisation W, B or G No I
5.2 Instruction set tagging W, B or G No I
5.3 Instruction Reordering W, B or G No I
6.1 Diverse Linux User IDs (UID) W, B or G No I and C
7 Change IP addresses of the hosts B Yes C and A
8 Changing listening port numbers W, B or G Yes C and A
9 Adding or deleting non-functional code W, B or G No I
10.1 Varying dynamic libraries and system calls W No I
10.2 Varying unique names of system files W No I
10.3 Varying magic numbers in certain files (e.g.,

executables)
W No I

Table 1. Configuration rules for diversifying the deployment of an OS or an application. Abbrevia-
tions: (W)hite-, (B)lack-, (G)rey-box; (C)onfidentiality, (I)ntegrity, (A)vailability

in alleviating are also listed. The structure of Table 1 is as
follows:

• ID – the rule identifier for easier traceability to the
technical report [10];

• Rule name – a concise description of the rule;

• Design implications – implications on the architectural
design of the operating system (OS) or application to
which the rule is applied:

Implementation intrusiveness – is access to the inter-
nal implementation of the OS or applications re-
quired to apply the rule (white box) or can the
rule be applied simply through the utilisation of
the OS or application’s configuration parameters
(black box)? There might also be grey box so-
lutions for which the implementation of the rule
may not need to have access to the internal im-
plementation of the OS or application but it can
be built on top of its API (Application Program-
ming Interface) - this is especially useful for pro-
prietary OSs and applications for which access to
the implementation is not provided. For some of
the rules, depending on the application or OS im-
plementation, any of these implementation types
(white-, black- or grey-box) are possible; in those

cases we list all (or a subset of the options) for a
given rule and we provide more detailed expla-
nation of the scenarios under which a given im-
plementation solution is possible in the technical
report [10].

Client notification required? – should client applica-
tions of the OS or application to which the rule is
applied be notified once the rule is applied?

• Security framework category – under which CIA (con-
fidentiality, integrity, availability) category does the
rule fall into.

The rules were generated in the following ways:

• Bottom-up – exploring the implementations of operat-
ing systems, such as Linux and MS Windows, and ap-
plications, such as database servers (e.g., PostgreSQL,
Interbase, Oracle, MS SQL), and identifying the fea-
tures and interfaces that can be diversified and config-
ured in different ways.

• Top-down – exploring reported vulnerabilities (such as
NVD [18]) and defining rules that can “workaround”
or protect against the types of vulnerabilities and at-
tacks listed in these sources.

• Lateral – reviewing existing literature of configura-
tion rules for protection against “malicious” behaviour

(such as [8]).

Which rule may be most effective at improving the se-
curity of a given system will depend on the operational and
threat profile of the system. For example, attacks that ex-
ploit memory programming errors (e.g., buffer overflows)
are one of today’s most serious security threats. These at-
tacks require an attacker to have an in-depth understand-
ing of the internal details of the system being attacked, in-
cluding the locations of critical data and/or code. Address
obfuscation techniques such as Address Space Layout Ran-
domisation- listed as rule 4.1 in Table 1 - randomize the
location of program data and code each time a program is
executed. It has been shown that address obfuscation can
greatly reduce the probability of successful attacks [3, 19].
Given that recoveries force the restart of every program in
the system, they are a perfect way of introducing address
obfuscation both at the OS and application level.

4 Evaluation

This section summarizes the assessment of the FOR-
EVER service, aiming to quantify how much this service
enhances the resilience of the system in which it is im-
plemented by evaluating the probability of system failure
through variation of i) time between recoveries, ii) proba-
bility of common vulnerabilities and iii) mean effectiveness
of configuration diversity rules applied.

The quantitative evaluation of the FOREVER service
was performed using a modelling methodology based on the
following argument: recovery actions determine a change in
the overall system configuration, therefore it is possible to
represent the entire operational life split into different peri-
ods of deterministic duration called “phases”. This feature
allows a reconfiguration strategy belonging to the Multiple
Phased System (MPS) class for which a modelling and eval-
uation methodology exists [16], supported by the DEEM
tool [4]. The details about the model were omitted for space
reasons, but the interested readers can find the full details
in [6].

System overview and assumptions The replicated sys-
tem used to assess the FOREVER service was composed of
n = 4 replicas and hence was able to tolerate up to f = 1
failed replicas (n≥ 3 f +1). Replicas were assumed to suf-
fer permanent arbitrary faults and to have one single failure
mode: “failed”. For ease of modelling, we assumed that a
replica, as soon as it was hit by a fault, explicitly manifested
a permanent failure. The (overall) system was considered
failed as soon as the number of failed replicas was greater
than f .

Replicas were diverse both in space (design diversity)
and in time (application of diversity rules). Design diversity

was modelled assuming that each replica has its own failure
rate λ i

A obtained by multiplying a basic value λA = 10−5

(about one failure per day, as in [7]) with a replica-specific
multiplier1 obtained from the results of a NVD study re-
ported elsewhere [2]. We pessimistically assumed that
λ i

A was increased by an “aging penalty” value δλ = 10−6

(10% of the basic failure rate) when no configuration di-
versity rule was applied during a recovery. We modelled
diversity in time domain updating the basic replica failure
rate after each recovery in this way: λ i

A(a f ter) = λ i
A(be f ore) +

δλ (1−δx), where δx ∈ {0, 1} is an “effectiveness” parame-
ter2 obtained as the mean value for the effectiveness param-
eters of all the applied rules.

Despite diversity, we assumed the existence of common
faults (e.g., common vulnerabilities) in pairs of replicas.
Common faults were modelled taking into account the con-
ditional probability δ i j that replica i is faulty, given that
replica j is hit by the same fault. The basic values for δ i j

were set3 based on the results of the NVD study [2], assum-
ing that a common fault between two replicas was mainly
due to the exploitation of a common vulnerability between
the corresponding operating systems.

The modelled recovery strategy managed proactive re-
coveries only (as in PBFT [5] and COCA [25]), performed
sequentially “one-at-the-time” on a round robin basis. Each
recovery action lasted for TR = 120 seconds4; a waiting time
TW took places between recoveries, so that the recovery pe-
riod was Tp = n(TR + TW) seconds . The recovery process
was assumed fault-free (a replica is correct after its recov-
ery).

Evaluation Results We evaluated the (overall) system
failure probability pF (i.e. the probability of having more
than f failed replicas) over mission time t, varying the fol-
lowing parameters: i) recovery period TP (acting on the
waiting time TW), ii) probability δi j of common faults and
iii) mean value δx for the effectiveness parameters of the
configuration diversity rules. The measure of interest was
evaluated using the analytic solver, with5 ε = 10−10 and
Maxiter = 104.

The results of the assessment are given in Figure 1; a
more extensive discussion of the analysis is given in [6].
The main outcomes can be summarised as follows. First
(Figure 1(a)), the shorter the time between replica recover-
ies the longer the system can survive failure-free; second

1The multipliers used here were 1.0, 1.8, 1.5 and 1.9.
2δx = 0: the rule is not effective at all, e.g., it changes the number of a

listening port that is not used; δx = 1: the rule has the optimal effect, e.g.,
it changes the root password following a root password compromise.

3The values for δ i j spanned between 0.004 and 0.029.
4As in [7], where a prototype of a system replicated with diversity,

possible target for the FOREVER service, was studied.
5ε represents the error tolerance, Maxiter the maximum number of it-

erations that has to be considered by the transient solution method.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 0 20000 40000 60000 80000 100000 120000

S
y
st

em
 F

ai
lu

re
 P

ro
b
ab

il
it

y
 P

F
(t

)

t (sec)

TW=840
TW=480
TW=360
TW= 0

(a) At varying the time TW between recoveries (with δλ = 0, δx = 0)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

 0 20000 40000 60000 80000 100000 120000

S
y
st

em
 F

ai
lu

re
 P

ro
b
ab

il
it

y
 P

F
(t

)

t (sec)

basic deltaij x 10
basic deltaij x 5
basic deltaij x 1

(ideal) basic deltaij x 0

(b) At varying the probability of common fault δi j (with δλ = 0 and δx = 0).
NOTE: we use ’delta’ instead of δ in the figure for font embedding purposes.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 0 20000 40000 60000 80000 100000 120000

S
y
st

em
 F

ai
lu

re
 P

ro
b
ab

il
it

y
 P

F
(t

)

t (sec)

deltax= 0
deltax=0.2
deltax=0.4
deltax=0.6
deltax=0.8

(ideal case) deltax= 1

(c) At varying the mean effectiveness δx of the configuration diversity rules
(δλ = 10−6). NOTE: we use ’delta’ instead of δ in the figure for font em-
bedding purposes.

Figure 1. System failure probability pF over time for different evaluation studies

(Figure 1(b)), the lower the common failure rate between
the replicas deployed in the system the lower the overall
system failure rate is (this is an obvious observation, but
the assessment also gives measures of how much worse the
overall system failure becomes when the common failure
rates of the replicas increases); and, third (Figure 1(c)), un-
der the assumption that the configuration rules can only im-
prove security, then the obvious observation from the as-
sessment is that it is better to apply any rule than no rule at
all; but we also see that the gains from lower failure rates
greatly depend on the effectiveness of the rule (or the rule-
set) applied, and measures of these gains can be estimated.

5 Conclusions

In this paper we have addressed the issue of how sys-
tems should evolve to tolerate the effects of ever-growing
and ever-present security threats. We defined a set of
twenty configuration rules for diversifying the implemen-
tation and/or the runtime environment of operating systems
and applications before deployment in a system as well as
in between system recoveries. These rules are then used as
part of a wider intrusion-tolerant architecture which utilises
a service we call FOREVER - Fault/intrusiOn REmoVal
through Evolution & Recovery. The FOREVER service in-
corporates both reactive and proactive methods of recovery
and is adaptable to work with traditional fault-tolerant ar-
chitectures, for instance those based on design diversity.

We also performed an assessment of several parameters
of the FOREVER service and the underlying architecture
and explained how the overall system failure rate is affected
from varying the parameters.

There are several provisions for extending the work pre-
sented in this paper. First, the configuration rules for diver-
sifying the operating systems and applications, presented in
section 3, can be extended with further new rules, proof of
concept implementations and deployments of these rules in
real applications.

Second, evaluation of the effects on system performance
(in terms of overall system response time and / or through-
put rates) that the application of these rules will cause.

Finally, the assessment model presented in section 4
could be refined to model reactive recovery actions [21, 7]
too, allowing us to study how effective is the trade-off be-
tween proactive and reactive recoveries, as well as to further
research the effectiveness of the configuration rules.

Acknowledgments

This work was partially supported by the EC through
project IST-2004-27513 (CRUTIAL) and NoE IST-4-
026764-NOE (RESIST), and by the FCT through the Mul-
tiannual Funding and the CMU-Portugal Programs.

References

[1] P. Ammann and J. Knight. Data diversity: An approach to
software fault tolerance. IEEE Transactions on Computers,
C-37(4):418–425, 1988.

[2] A. N. Bessani, R. R. Obelheiro, P. Sousa, and I. Gashi. On
the effects of diversity on intrusion tolerance. DI/FCUL TR
08–30, Dep. of Informatics, Univ. of Lisbon, Dec. 2008.

[3] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient tech-
niques for comprehensive protection from memory error ex-
ploits. In Proc. of the 14th USENIX Security Symp., pages
271–286, 2005.

[4] A. Bondavalli, I. Mura, S. Chiaradonna, R. Filippini, S. Poli,
and F. Sandrini. DEEM: a tool for the dependability mod-
eling and evaluation of multiple phased systems. In IEEE
Int. Conf. on Dependable Systems and Networks (DSN 2000),
pages 231–236, 2000.

[5] M. Castro and B. Liskov. Practical Byzantine fault-tolerance
and proactive recovery. ACM TOCS, 20(4):398–461, 2002.

[6] A. Daidone. Forever assessment: modelling details. Techni-
cal Report rcl080508, Univ. of Florence, Dip. Sistemi Infor-
matica, RCL group, Dec. 2008.

[7] A. Daidone, S. Chiaradonna, A. Bondavalli, and P. Verı́ssimo.
Analysis of a redundant architecture for critical infrastructure
protection. In R. De Lemos, F. Di Giandomenico, C. Gacek,
H. Muccini, and M. Vieira, editors, Architecting Dependable
Systems V, volume 5135 of LNCS, pages 78–100. 2008.

[8] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse
computer systems. In Proceedings of The 6th Workshop on
Hot Topics in Operating Systems, pages 67–72, Cape Cod,
MA, USA, 1997. IEEE Computer Society Press.

[9] I. Gashi and P. Popov. Rephrasing rules for off-the-shelf sql
database servers. In 6th European Dependable Computing
Conf. (EDCC-6), pages 139–148, Coimbra, Portugal, 2006.

[10] I. Gashi and V. Stankovic. List of rules
for diversifying operating systems and applica-
tions and their respective runtime environment(s).
http://www.csr.city.ac.uk/people/ilir.gashi/ConfigDiv/, 2008.

[11] J. Gray. Why do computers stop and what can be done about
it? In 5th Symposium on Reliability in Distributed Software
and Database Systems (SRDSDS-5), pages 3–12, Los Ange-
les, CA, USA, 1986. IEEE Computer Society Press.

[12] M. A. Hiltunen, R. D. Schlichting, C. A. Ugarte, and G. T.
Wong. Survivability through customization and adaptability:
The cactus approach. In DARPA Information Survivability
Conference & Exposition, 2000. 04900294.pdf.

[13] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In Proc.
of the 21st ACM Symp. on Operating Systems Principles
(SOSP’07), Oct. 2007.

[14] B. Littlewood, P. Popov, and L. Strigini. Modelling soft-
ware design diversity - a review. ACM Computing Surveys,
33(2):177–208, 2001.

[15] H. Moniz, N. F. Neves, M. Correia, and P. Verı́ssimo.
Randomized intrusion-tolerant asynchronous services. In
Proc. of the Int. Conf. on Dependable Systems and Networks
(DSN’06), pages 568–577, jun 2006.

[16] I. Mura and A. Bondavalli. Markov regenerative stochastic
Petri nets to model and evaluate the dependability of phased
missions. IEEE Transactions on Computers, 50(12):1337–
1351, 2001.

[17] A. Nguyen-Tuong, D. Evans, J. C. Knight, B. Cox, and
J. W. Davidson. Security through redundant data diversity.
In 38th IEEE/IFPF International Conference on Dependable
Systems and Networks (DSN’08),, Anchorage, Alaska, USA,
2008.

[18] National vulnerability database. http://nvd.nist.gov/, 2008.
[19] R. Pucella and F. B. Schneider. Independence from obfus-

cation: A semantic framework for diversity. In Proc. of the
19th IEEE Work. on Computer Security Foundations, pages
230–241, 2006.

[20] J. Reynolds, J. Just, E. Lawson, L. Clough, R. Maglich, and
K. Levitt. The design and implementation of an intrusion
tolerant system. In Dependable Systems and Networks (DSN-
02), pages 285–292, Washington, D.C., USA, 2002. IEEE
Computer Society Press.

[21] P. Sousa, A. N. Bessani, and R. R. Obelheiro. The FOR-
EVER service for fault/intrusion removal. In 2nd Work-
shop on Recent Advances on Intrusion-Tolerant Systems
(WRAITS’08), Apr. 2008.

[22] L. Strigini. Fault tolerance against design faults. In H. Diab
and A. Zomaya, editors, Dependable Computing Systems:
Paradigms, Performance Issues, and Applications, pages
213–241. J. Wiley & Sons, 2005.

[23] M. van der Meulen, S. Riddle, L. Strigini, and N. Jefferson.
Protective wrapping of off-the-shelf components. In 4th Int.
Conf. on COTS-Based Software Systems (ICCBSS ’05), vol-
ume LNCS, pages 168–177, 2005.

[24] P. Verissimo. Travelling through wormholes: a new look at
distributed systems models. SIGACT News, 37(1), 2006.

[25] L. Zhou, F. Schneider, and R. Van Rennesse. COCA: A se-
cure distributed online certification authority. ACM TOCS,
20(4):329–368, Nov. 2002.

