2,086 research outputs found

    Relationship Between Pain and Post-Traumatic Stress Symptoms in Palliative Care

    Get PDF
    http://www.journals.elsevier.com/journal-of-pain-and-symptom-management/ 0885-3924 Context. Previous research suggests that patients receiving palliative care may simultaneously experience poorly managed pain and post-traumatic stress disorder (PTSD)-related symptoms as a result of their deteriorating health. Objectives. To: 1) examine predictors of PTSD-related symptoms in patients requiring palliative care; 2) assess whether anxiety, depression, pain catastrophizing, and pain anxiety mediate the relationship between pain interference and PTSD-related symptoms; and 3) evaluate the impact of these variables on pain interference and PTSD-related symptoms. Methods. One hundred patients receiving palliative care at one of two palliative care sites in London, ON, Canada, completed the PTSD ChecklistdCivilian version (PCL-C), the Hospital Anxiety and Depression Scale (HADS), the Pain Catastrophizing Scale (PCS), the Brief Pain Inventory-Short Form (BPI-SF), and the Pain Anxiety Symptoms Scale-20 (PASS-20). Hierarchical multiple regressions were used to examine HADS-Anxiety, HADS-Depression, PCS and PASS-20 scores as predictors of PCL-C scores; and mediation analyses were used to test the effect of HADS-Anxiety, HADS-Depression, PCS, and PASS-20 on the relationship between BPI-SF interference and PCL-C. Mediators that significantly affected this relationship in the individual mediator models were entered into a multiple mediator model. Results. Only pain anxiety and pain catastrophizing emerged as significant mediators of the relationship between pain interference and PTSD-related symptoms. After being entered in a multiple mediator model, pain anxiety emerged as the strongest mediator. Conclusion. The findings of the present study reveal that pain and PTSD-related symptoms are important concerns in palliative care, and that pain must be addressed to best meet the needs of this population.Dr. Roth was supported by a Canadian Institutes of Health Research (CIHR) Doctoral Research Award. Dr. Katz was supported by a CIHR Canada Research Chair in Health Psychology. This article is based in part on Dr. Roth’s doctoral dissertation. The authors declare no conflicts of interest

    Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses

    Full text link
    In this paper, we systematically investigate both the synfire propagation and firing rate propagation in feedforward neuronal network coupled in an all-to-all fashion. In contrast to most earlier work, where only reliable synaptic connections are considered, we mainly examine the effects of unreliable synapses on both types of neural activity propagation in this work. We first study networks composed of purely excitatory neurons. Our results show that both the successful transmission probability and excitatory synaptic strength largely influence the propagation of these two types of neural activities, and better tuning of these synaptic parameters makes the considered network support stable signal propagation. It is also found that noise has significant but different impacts on these two types of propagation. The additive Gaussian white noise has the tendency to reduce the precision of the synfire activity, whereas noise with appropriate intensity can enhance the performance of firing rate propagation. Further simulations indicate that the propagation dynamics of the considered neuronal network is not simply determined by the average amount of received neurotransmitter for each neuron in a time instant, but also largely influenced by the stochastic effect of neurotransmitter release. Second, we compare our results with those obtained in corresponding feedforward neuronal networks connected with reliable synapses but in a random coupling fashion. We confirm that some differences can be observed in these two different feedforward neuronal network models. Finally, we study the signal propagation in feedforward neuronal networks consisting of both excitatory and inhibitory neurons, and demonstrate that inhibition also plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience (published

    How Do Galaxies Get Their Gas?

    Get PDF
    Not the way one might have thought. In hydrodynamic simulations of galaxy formation, some gas follows the traditionally envisioned route, shock heating to the halo virial temperature before cooling to the much lower temperature of the neutral ISM. But most gas enters galaxies without ever heating close to the virial temperature, gaining thermal energy from weak shocks and adiabatic compression, and radiating it just as quickly. This ``cold mode'' accretion is channeled along filaments, while the conventional, ``hot mode'' accretion is quasi-spherical. Cold mode accretion dominates high redshift growth by a substantial factor, while at z<1 the overall accretion rate declines and hot mode accretion has greater relative importance. The decline of the cosmic star formation rate at low z is driven largely by geometry, as the typical cross section of filaments begins to exceed that of the galaxies at their intersections.Comment: 7 pages, 1 figure. To be published in the proceedings of the IGM/Galaxy Connection- The Distribution of Baryons at z=0 conferenc

    Captive reptile mortality rates in the home and implications for the wildlife trade

    Get PDF
    The trade in wildlife and keeping of exotic pets is subject to varying levels of national and international regulation and is a topic often attracting controversy. Reptiles are popular exotic pets and comprise a substantial component of the live animal trade. High mortality of traded animals raises welfare concerns, and also has implications for conservation if collection from the wild is required to meet demand. Mortality of reptiles can occur at any stage of the trade chain from collector to consumer. However, there is limited information on mortality rates of reptiles across trade chains, particularly amongst final consumers in the home. We investigated mortality rates of reptiles amongst consumers using a specialised technique for asking sensitive questions, additive Randomised Response Technique (aRRT), as well as direct questioning (DQ). Overall, 3.6% of snakes, chelonians and lizards died within one year of acquisition. Boas and pythons had the lowest reported mortality rates of 1.9% and chameleons had the highest at 28.2%. More than 97% of snakes, 87% of lizards and 69% of chelonians acquired by respondents over five years were reported to be captive bred and results suggest that mortality rates may be lowest for captive bred individuals. Estimates of mortality from aRRT and DQ did not differ significantly which is in line with our findings that respondents did not find questions about reptile mortality to be sensitive. This research suggests that captive reptile mortality in the home is rather low, and identifies those taxa where further effort could be made to reduce mortality rate

    Calprotectin and the Magnitude of Antibodies to Infliximab in Clinically-stable Ulcerative Colitis Patients are More Relevant Than Infliximab Trough Levels and Pharmacokinetics for Therapeutic Escalation

    Get PDF
    Although infliximab (IFX) is an efficient therapy for ulcerative colitis (UC) patients, a considerably high rate of therapeutic failures still occurs. This study aimed at a better understanding of IFX pharmacokinetics and pharmacodynamics among clinically-asymptomatic UC patients. This was a multicentric and prospective study involving 65 UC patients in the maintenance phase of IFX therapy. There were no significant differences between patients with positive and negative clinical, endoscopic and histological outcomes concerning their IFX trough levels (TLs), area under the IFX concentration vs. time curve (AUC), clearance and antibodies to infliximab (ATI) levels. However, the need to undergo therapeutic escalation later in disease development was significantly associated with higher ATI levels (2.62 mu g/mL vs. 1.15 mu g/mL, p=0.028). Moreover, and after adjusting for disease severity, the HR (hazard ratio) for therapeutic escalation was significantly decreased for patients with an ATI concentration below 3 mu g/mL (HR = 0.119, p = 0.010), and increased for patients with fecal calprotectin (FC) level above 250 mu g/g (HR = 9.309, p = 0.018). In clinically-stable UC patients, IFX pharmacokinetic features cannot predict therapeutic response on a short-term basis. However, high levels of ATIs or FC may be indicative of a future therapeutic escalation. (C) 2017 The Authors. Published by Elsevier B.V.Portuguese IBD Group (GEDII - Grupo de Estudo da Doenca Inflamatoria Intestinal)info:eu-repo/semantics/publishedVersio

    nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    Get PDF
    We examine subhaloes and galaxies residing in a simulated Λ\Lambda cold dark matter galaxy cluster (M200critM^{crit} _{200} = 1.1 × 1015^{15} h−1h^{−1} M⊙_\odot) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics\textit{full feedback physics} runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲\lesssim10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲\lesssim0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and VmaxV_{max} distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully–Fisher relation is similar in almost all codes, the number of galaxies with 109^9 h−1h^{−1} M⊙_\odot ≲\lesssim M∗M_∗ ≲\lesssim 1012^{12} h−1h^{−1} M⊙_\odot can differ by a factor of 4. Individual galaxies show code-to-code scatter of ~0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments\textit{in all environments} remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ~0.2–0.4 dex

    nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    Get PDF
    We examine subhaloes and galaxies residing in a simulated Λ\Lambda cold dark matter galaxy cluster (M200critM^{crit} _{200} = 1.1 × 1015^{15} h−1h^{−1} M⊙_\odot) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics\textit{full feedback physics} runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲\lesssim10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲\lesssim0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and VmaxV_{max} distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully–Fisher relation is similar in almost all codes, the number of galaxies with 109^9 h−1h^{−1} M⊙_\odot ≲\lesssim M∗M_∗ ≲\lesssim 1012^{12} h−1h^{−1} M⊙_\odot can differ by a factor of 4. Individual galaxies show code-to-code scatter of ~0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments\textit{in all environments} remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ~0.2–0.4 dex

    nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region

    Get PDF
    We examine the properties of the galaxies and dark matter haloes residing in the cluster infall region surrounding the simulated Λ\Lambda cold dark matter galaxy cluster studied by Elahi et al. at zz = 0. The 1.1 × 1015^{15} h−1h^{−1} M⊙_\odot galaxy cluster has been simulated with eight different hydrodynamical codes containing a variety of hydrodynamic solvers and sub-grid schemes. All models completed a dark-matter-only, non-radiative and full-physics run from the same initial conditions. The simulations contain dark matter and gas with mass resolution mDMm_\text{DM} = 9.01 × 108^8 h−1h^{−1} M⊙_\odot and mgasm_\text{gas} = 1.9 × 108^8 h−1h^{−1} M⊙_\odot, respectively. We find that the synthetic cluster is surrounded by clear filamentary structures that contain ~60 per cent of haloes in the infall region with mass ~1012.5^{12.5}–1014^{14} h−1h^{−1} M⊙_\odot, including 2–3 group-sized haloes (>1013^{13} h−1h^{−1} M⊙_\odot). However, we find that only ~10 per cent of objects in the infall region are sub-haloes residing in haloes, which may suggest that there is not much ongoing pre-processing occurring in the infall region at zz = 0. By examining the baryonic content contained within the haloes, we also show that the code-to-code scatter in stellar fraction across all halo masses is typically ~2 orders of magnitude between the two most extreme cases, and this is predominantly due to the differences in sub-grid schemes and calibration procedures that each model uses. Models that do not include active galactic nucleus feedback typically produce too high stellar fractions compared to observations by at least ~1 order of magnitude.The authors would like the acknowledge the Centre for High Performance Computing in Rosebank, Cape Town, for financial support and for hosting the ‘Comparison Cape Town’ workshop in 2016, July. The authors would further like to acknowledge the support of the International Centre for Radio Astronomy Research (ICRAR) node at the University of Western Australia (UWA) in hosting the precursor workshop ‘Perth Simulated Cluster Comparison’ in 2015, March; the financial support of the UWA Research Collaboration Award 2014 and 2015 schemes; the financial support of the ARC Centre of Excellence for All Sky Astrophysics (CAASTRO) CE110001020 and ARC Discovery Projects DP130100117 and DP140100198. We would also like to thank the Instituto de Fisica Teorica (IFT-UAM/CSIC in Madrid) for its support, via the Centro de Excelencia Severo Ochoa Program under Grant No. SEV- 2012-0249, during the three-week workshop ‘nIFTy Cosmology’ in 2014, where the foundation for the whole comparison project was established. JA acknowledges support from a post-graduate award from STFC. PJE is supported by the SSimPL programme and the Sydney Institute for Astronomy (SIfA) and Australian Research Council (ARC) grants DP130100117 and DP140100198. AK is supported by the Ministerio de Econom´ıa y Competitividad (MINECO) in Spain through grant AYA2012-31101 as well as the ConsoliderIngenio 2010 Programme of the Spanish Ministerio de Ciencia e Innovacion (MICINN) under grant MultiDark CSD2009-00064. ´ He also acknowledges support from the ARC grant DP140100198. He further thanks Noonday Underground for surface noise. STK acknowledges support from STFC through grant ST/L000768/1. CP acknowledges the support of the ARC through Future Fellowship FT130100041 and Discovery Project DP140100198. WC and CP acknowledge the support of ARC DP130100117. GY and FS acknowledge support from MINECO (Spain) through the grant AYA 2012-31101. GY thanks also the Red Espanola de Supercomputa- ˜ cion for granting the computing time in the Marenostrum Supercomputer at BSC, where all the MUSIC simulations have been performed. AMB is supported by the DFG Research Unit 1254 ‘Magnetisation of interstellar and intergalactic media’ and by the DFG Cluster of Excellence ‘Universe’. GM acknowledge support from the PRIN-MIUR 2012 Grant ‘The Evolution of Cosmic Baryons’ funded by the Italian Minister of University and Research, by the PRIN-INAF 2012 Grant ‘Multi-scale Simulations of Cosmic Structures’, by the INFN INDARK Grant and by the ‘Consorzio per la Fisica di Trieste’. IGM acknowledges support from an STFC Advanced Fellowship. EP acknowledges support by the ERC grant ‘The Emergence of Structure During the Epoch of Reionization’
    • …
    corecore