3,024 research outputs found

    Geostrophic balance preserving interpolation in mesh adaptive shallow-water ocean modelling

    Full text link
    The accurate representation of geostrophic balance is an essential requirement for numerical modelling of geophysical flows. Significant effort is often put into the selection of accurate or optimal balance representation by the discretisation of the fundamental equations. The issue of accurate balance representation is particularly challenging when applying dynamic mesh adaptivity, where there is potential for additional imbalance injection when interpolating to new, optimised meshes. In the context of shallow-water modelling, we present a new method for preservation of geostrophic balance when applying dynamic mesh adaptivity. This approach is based upon interpolation of the Helmholtz decomposition of the Coriolis acceleration. We apply this in combination with a discretisation for which states in geostrophic balance are exactly steady solutions of the linearised equations on an f-plane; this method guarantees that a balanced and steady flow on a donor mesh remains balanced and steady after interpolation onto an arbitrary target mesh, to within machine precision. We further demonstrate the utility of this interpolant for states close to geostrophic balance, and show that it prevents pollution of the resulting solutions by imbalanced perturbations introduced by the interpolation

    Differences in Patient Age Distribution between Influenza A Subtypes

    Get PDF
    Since the spring of 1977, two subtypes of influenza A virus (H3N2 and H1N1) have been seasonally infecting the human population. In this work we study the distribution of patient ages within the populations that exhibit the symptomatic disease caused by each of the different subtypes of influenza virus. When the publicly available extensive information is pooled across multiple geographical locations and seasons, striking differences emerge between these subtypes. We report that the symptomatic flu due to H3N2 is distributed across all age groups, whereas H1N1 causes symptomatic disease mainly in a younger population. These distinct characteristic spectra of age groups, possibly carried over from previous pandemics, are consistent with previous findings on the evolutionary dynamics of each subtype. Moreover, they are relevant to age-related risk assessments, modeling of epidemiological networks for specific age groups, and age-specific vaccine design. Recently, a novel H1N1 virus has spread around the world. Preliminary reports suggest that this new strain causes symptomatic disease in the younger population in a similar fashion to the seasonal H1N1 strains

    Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor.

    Get PDF
    Mechanically stimulating cell-seeded scaffolds by flow-perfusion is one approach utilized for developing clinically applicable bone graft substitutes. A key challenge is determining the magnitude of stimuli to apply that enhances cell differentiation but minimizes cell detachment from the scaffold. In this study, we employed a combined computational modeling and experimental approach to examine how the scaffold mean pore size influences cell attachment morphology and subsequently impacts upon cell deformation and detachment when subjected to fluid-flow. Cell detachment from osteoblast-seeded collagen-GAG scaffolds was evaluated experimentally across a range of scaffold pore sizes subjected to different flow rates and exposure times in a perfusion bioreactor. Cell detachment was found to be proportional to flow rate and inversely proportional to pore size. Using this data, a theoretical model was derived that accurately predicted cell detachment as a function of mean shear stress, mean pore size, and time. Computational modeling of cell deformation in response to fluid flow showed the percentage of cells exceeding a critical threshold of deformation correlated with cell detachment experimentally and the majority of these cells were of a bridging morphology (cells stretched across pores). These findings will help researchers optimize the mean pore size of scaffolds and perfusion bioreactor operating conditions to manage cell detachment when mechanically simulating cells via flow perfusion. Biotechnol. Bioeng. © 2012 Wiley Periodicals, Inc

    Successful treatment of pediatric IgG4 related systemic disease with mycophenolate mofetil: case report and a review of the pediatric autoimmune pancreatitis literature

    Get PDF
    Autoimmune pancreatitis is frequently associated with elevated serum and tissue IgG4 levels in the adult population, but there are few reports of pediatric autoimmune pancreatitis, and even fewer reports of IgG4 related systemic disease in a pediatric population. The standard of care treatment in adults is systemic corticosteroids with resolution of symptoms in most cases; however, multiple courses of corticosteroids are occasionally required and some patients require long term corticosteroids. In these instances, steroid sparing disease modify treatments are in demand. We describe a 13-year-old girl with IgG4 related systemic disease who presented with chronic recurrent autoimmune pancreatitis resulting in surgical intervention for obstructive hyperbilirubinemia and chronic corticosteroid treatment. In addition, she developed fibrosing medianstinitis as part of her IgG4 related systemic disease. She was eventually successfully treated with mycophenolate mofetil allowing for discontinuation of corticosteroids. This is the first reported use of mycophenolate mofetil for IgG4 related pancreatitis. Although autoimmune pancreatitis as part of IgG4 related systemic disease is rarely reported in pediatrics, autoimmune pancreatitis is also characterized as idiopathic fibrosing pancreatitis. All pediatric autoimmune pancreatitis cases reported in the world medical literature were identified via a PUBMED search and are reviewed herein. Twelve reports of pediatric autoimmune pancreatitis were identified, most of which were treated with corticosteroids or surgical approaches. Most case reports failed to report IgG4 levels, so it remains unclear how commonly IgG4 related autoimmune pancreatitis occurs during childhood. Increased evaluation of IgG4 levels in patients with autoimmune pancreatitis may shed further light on the association of IgG4 with pancreatitis and the underlying pathophysiology

    Racial Disparity in Police Stop and Searches in England and Wales

    Get PDF
    Data published by the United Kingdom's Ministry for Justice clearly shows that, compared to persons who were White, members of racial minorities in England, particularly Blacks, were far more likely to be stopped and searched by the police. The question is whether such racial disparity in stops and searches could be justified by racial disparities in offending? Or whether the disparity in stop and searches exceeded the disparity in offending? This paper proposes a method for measuring the amount of excess in racial disparity in police stop and searches. Using the most recently published Ministry of Justice data (for 2007/08) for Police Areas in England and Wales it concludes that while in several Areas there was no excess to racial disparity in police stop and searches, there was, on the basis of the methodology proposed in the paper, evidence of such excess in some Police Areas of England and Wales

    Physiology of invasion: Cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance

    Get PDF
    Understanding the mechanisms that constrain the invasiveness of introduced animals is essential for managing invasions and for predicting their limits. In most vertebrate species, the capacity for invasion relies upon the physiological systems that support locomotion, and oxygen transport and metabolism may become limiting as environmental temperatures increase as predicted by the oxygen limitation hypothesis. Here we test the oxygen limitation hypothesis and propose the alternative hypothesis that within-individual plasticity will compensate for thermal variation. We show that during exercise in the invasive cane toad (Rhinella marina) oxygen transport by the cardiovascular system was maximised in warm-acclimated toads at high (30 degrees C) temperatures, and that oxygen content of arterial blood was not affected by temperature. Resting oxygen consumption remained stable across a 10 degrees C temperature range (20-30 degrees C) when toads were allowed to acclimate, so that there was no increase in resting oxygen demand that could lead to a decrease in aerobic scope at high temperatures. Additionally, temperature acclimation had no effect on arterial-venous differences in oxygen partial pressures. Toads relied more on glycolytic ATP production at low temperatures to support locomotor activity. Mitochondrial capacities (citrate synthase and cytochrome c oxidase activities) were greatest at warmer temperatures. Interestingly, the metabolic cost of exercise increased at low temperatures. In contradiction to predictions by the oxygen limitation hypothesis, aerobic performance was not limited by high temperatures. On the contrary, the relatively slow advance of cane toads to cooler climates can be explained by the constraints of low temperatures on the physiological systems supporting locomotion. It is likely that human-induced global warming will facilitate invasions of environments that are currently too cool to support cane toads

    The Earliest Evidence of Holometabolan Insect Pupation in Conifer Wood

    Get PDF
    Background: The pre-Jurassic record of terrestrial wood borings is poorly resolved, despite body fossil evidence of insect diversification among xylophilic clades starting in the late Paleozoic. Detailed analysis of borings in petrified wood provides direct evidence of wood utilization by invertebrate animals, which typically comprises feeding behaviors.\ud \ud Methodology/Principal Findings: We describe a U-shaped boring in petrified wood from the Late Triassic Chinle Formation of southern Utah that demonstrates a strong linkage between insect ontogeny and conifer wood resources. Xylokrypta durossi new ichnogenus and ichnospecies is a large excavation in wood that is backfilled with partially digested xylem, creating a secluded chamber. The tracemaker exited the chamber by way of a small vertical shaft. This sequence of behaviors is most consistent with the entrance of a larva followed by pupal quiescence and adult emergence — hallmarks of holometabolous insect ontogeny. Among the known body fossil record of Triassic insects, cupedid beetles (Coleoptera: Archostemata) are deemed the most plausible tracemakers of Xylokrypta, based on their body size and modern xylobiotic lifestyle.\ud \ud Conclusions/Significance: This oldest record of pupation in fossil wood provides an alternative interpretation to borings once regarded as evidence for Triassic bees. Instead Xylokrypta suggests that early archostematan beetles were leaders in exploiting wood substrates well before modern clades of xylophages arose in the late Mesozoic

    Clinically Translatable Cell Tracking and Quantification by MRI in Cartilage Repair Using Superparamagnetic Iron Oxides

    Get PDF
    Background: Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, cell viability, long term metabolic cell activity, chondrogenic differentiation and hBMSC secretion profile. We additionally examined the capacity of synovial cells to endocytose SPIO from dead, labeled cells, together with the use of magnetic resonance imaging (MRI) for intra-articular visualization and quantification of SPIO labeled cells. Methodology/Prinicipal Findings: Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays. Synovial SPIO re-uptake was investigated in vitro by co-labeling cells with SPIO and green fluorescent protein (GFP). MRI experiments were performed on a clinical 3.0T MRI scanner. Two cell-based cartilage repair techniques were mimicked for evaluating MRI traceability of labeled cells: intra-articular cell injection and cell implantation in cartilage defects. Cells were applied ex vivo or in vitro in an intra-articular environment and immediately scanned. SPIO labeling was effective and did not impair any of the studied safety aspects, including hBMSC secretion profile. SPIO from dead, labeled cells could be taken up by synovial cells. Both injected and implanted SPIO-labeled cells could accurately be visualized by MRI in a clinically relevant sized joint model using clinically applied cell doses. Finally, we quantified the amount of labeled cells seeded in cartilage defects using MR-based relaxometry. Conclusions: SPIO labeling appears to be safe without influencing cell behavior. SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin
    • …
    corecore