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Abstract 

Since the spring of 1977, two subtypes of influenza A virus (H3N2 and H1N1) have been 

seasonally infecting the human population. In this work we study the distribution of patient ages 

within the populations that exhibit the symptomatic disease caused by each of the different 

subtypes of influenza virus. When the publicly available extensive information is pooled across 

multiple geographical locations and seasons, striking differences emerge between these subtypes. 

We report that the symptomatic flu due to H3N2 is distributed across all age groups, whereas 

H1N1 causes symptomatic disease mainly in a younger population. These distinct characteristic 

spectra of age groups, possibly carried over from previous pandemics, are consistent with 

previous findings on the evolutionary dynamics of each subtype. Moreover, they are relevant to 

age-related risk assessments, modeling of epidemiological networks for specific age groups, and 

age-specific vaccine design. Recently, a novel H1N1 virus has spread around the world. 

Preliminary reports suggest that this new strain causes symptomatic disease in the younger 

population in a similar fashion to the seasonal H1N1 strains. 

  

Introduction 

 

The year 1918 was marked by the “Spanish flu” H1N1 pandemic that killed more than 50 million 

people worldwide (1). The H1N1 virus disappeared from the human population nearly forty 

years later, when in 1957 the H2N2 pandemic propagated around the globe. Except for a few 

singular reports, such as the Fort Dix swine flu case in 1976 (2), H1N1 was not isolated from 

humans for another 20 years. In May of 1977, the human H1N1 strain reappeared in Northern 

China (3). At the time, the main concern was for the younger population born after 1957, which 
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had never been exposed to this subtype of the virus. As expected, the spreading epidemic was 

almost entirely restricted to the sub-adult population (4).  

 

Due to improvements in public health conditions, the life expectancy in Europe and North 

America has increased. In contrast however, most probably because of the growing size of the 

older population, the US influenza death toll surged fourfold from 1976 to 1999.  Older people, 

along with young children, are particularly vulnerable to severe outcomes and secondary 

infections (5).  

 

Over the last few years, the information available in various public influenza databases has 

expanded dramatically. This information, appended to the sequences of viral isolates, includes 

the age and sex of the patient, and the date and geographical location of specimen collection. 

Thus, the probing of databases to attempt to uncover demographic trends has become feasible. 

Furthermore, the statistical significance of the conclusions that are drawn is reinforced when the 

same trends are observed across independent datasets, and most particularly when datasets are 

merged in various combinations.  

 

An important limitation for the collection of a truly random set of influenza isolates is the fact 

that not all persons infected by influenza virus clearly show the symptoms of influenza-like 

illness (ILI). Any strain of the virus can infect an individual without causing acute symptomatic 

disease. Thus, the content of the datasets is generally restricted to isolates from persons who 

were exhibiting at least fairly severe symptomatic disease, who are henceforth referred to as 

“patients” of a given subtype.  

 

A previous study, which was based on a broader interpretation of ILI symptoms, reported a 

relationship between patient age group and subtype of influenza virus (6). The concern regarding 

unknown biases in sequence datasets can be mitigated by noting that although the samples were 

not methodically collected by a random protocol within the population, the number of incidents 

for both subtypes are sufficiently large that the bias in the study is reduced. In other words, 

because the sequences were not collected with a prior knowledge of the subtype of the infecting 

virus, the statistical significance of the conclusions solely depends on the quantities of the 
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isolates for each subtype, and their comparability in number. Obviously, the larger the database, 

the higher the accuracy of probability estimates.  

 

In this work, we analyzed samples collected in New York State, and also data sets entailing 

temporally and geographically diverse information deposited in the Influenza Virus Resource 

of the National Center for Biotechnology Information (NCBI). We find a significant 

dissimilarity, relating to the patient age distribution of infection, between the two circulating 

influenza A subtypes.  Moreover, we provide a more robust statistical measure by combining 

several datasets and comparing the age distributions of the influenza A subtypes. 

 

Methods  

 

We first studied a dataset complied by the Laboratory of Viral Diseases at the Wadsworth 

Center, New York State Department of Health (NYSDOH). This dataset, which includes the 

infecting virus subtype as well as the age and sex of the patient, spans the influenza A-positive 

specimens received during the 2006-2007 and 2007-2008 influenza seasons.  There are a total of 

77 H1N1 and 139 H3N2 isolates in this dataset.  

 

For a more extensive dataset, we acquired a set of sequences for the hemagglutinin (HA) 

segment from the H1N1 and H3N2 subtype isolates in the United States from the NCBI public 

database (7). We chose the HA segment solely because of the great number of available 

sequences. To try to ensure a high accuracy in the sequences, we selected ones from large-scale 

genome-sequencing projects, and we stipulated that the age and sex of the patient be available 

for each isolate. This U.S. dataset contains 512 H1N1 and 1168 H3N2 sequences collected as 

early as 1995, although the majority are from 2006-2008. By applying similar criteria for 

inclusion, we also acquired a set of complete HA sequences from Oceania (mostly from New 

Zealand) comprising 179 H1N1 and 586 H3N2 sequences collected from 2000 to 2007.  

 

The number of patients showing symptomatic disease in each of the age groups is a function of 

the particular characteristics of the analyzed subpopulation. For the purpose of assessing the age-

trend differences between the groups contracting influenza caused by either the H1N1 or H3N2 
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subtype virus, we employed empirical cumulative distribution functions in relation to age.  To 

assess the statistical significance of the trends, we chose the nonparametric Mann-Whitney and 

Kolmogorov-Smirnov tests; these respectively compare the two cumulative distributions via their 

median difference and their maximum difference. 

 

 
Fig. 1: Empirical cumulative distribution of ages for patietns with H1N1 (blue) and H3N2 (red) in New York State 

during the 2006-2007 and 2007-2008 influenza seasons. The significantly low probabilities computed via Mann-

Whitney (P(MN)) and Kolmogorov-Smirnov (P(KS)) tests indicate a remarkable dissimilarity between the 

distributions. 

 

Results and Discussion 

 

We first examined age trends in the NYSDOH dataset. When NYSDOH data from the 2006-

2007 and 2007-2008 influenza seasons were combined, we found that 47% of the detected H1N1 

cases were reported in patients younger than 20 years. Furthermore, only 14% of patients were 

older than 40 years, and there were no reports of patients older than 61. The H3N2 strain, on the 

other hand, was contracted across all age groupings. Approximately 27% of the reported H3N2 

cases were in patients younger than 20 years, and 27% were reported in patients older than 40. 

More than 7% of the patients with symptomatic influenza caused by subtype H3N2 were older 

than 80 years. Both statistical measures confirmed a significant dissimilarity between the age 

distributions for the two subtypes: the probabilities that the observed age trends come from the 
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same distribution are as low as P(MW) = 3.91E-05 and P(KS) = 4.81E-04 according to Mann-

Whitney and Kolmogorov-Smirnov tests, respectively (Fig. 1). 

 
Table : The studied datasets from New York State and the NCBI 

Dataset  H1N1 H3N2 P(MW)* P(KS)* 

 Season Mediana Oldestb Countc Mediana Oldestb Countc   

New York State 2006-2008 21 1947 77 24 1914 139 3.91E-05 4.81E-04 

NCBI: United States 2007-2008 21 1948 136 25 1930 478 6.64E-03 5.18E-05 

NCBI: United States 2006-2007 7 1940 299 13 1923 77 2.15E-06 1.70E-06 

NCBI: United States 1995-2008 9 1928 512 26 1911 1168 3.56E-48 2.15E-50 

NCBI: Oceania 2000-2007 20 1923 179 23 1907 586 4.19E-01 4.03E-05 

NCBI: All Data 2000-2007 9 1923 583 23 1907 1014 3.77E-18 1.57E-25 

 

a: the median age, b: the birth year of the oldest person, c: number of counts. Probabilities computed for Mann-Whitney (P(MN)) and 

Kolmogorov-Smirnov (P(KS)) tests 

 

 
Fig. 2: Empirical cumulative distribution of ages for patients with H1N1 (blue) and H3N2 (red), from the NCBI 

dataset, in the United States, between 1995 and 2008 (left) and Oceania, between 2000 and 2007 (right). 

Complementary to the results from New York State (Fig. 1), the low probabilities computed via Mann-Whitney 

(P(MN)) and Kolmogorov-Smirnov (P(KS)) tests show a significant difference between the distributions, which is 

spatially and temporally consistent. 

 

When we examined the more extensive NCBI dataset for similar trends in age distribution 

among the subtypes, we observed the following in the 1995-2008 data from the United States 

(Fig. 2, left): approximately 76% of the H1N1 patients were younger than 20 years old, and less 
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than 8% were older than 40. There was no report of any H1N1 patient older than 75 years in our 

dataset. On the other hand, roughly 39% of the H3N2 patients were younger than 20, and 32% 

were older than 40.  Also, slightly less than 11% were older than 80; the oldest H3N2 patient was 

97. Overall, ILI caused by H3N2 was exhibited across all age groupings, whereas H1N1 caused 

disease mainly in a younger population. The Mann-Whitney test applied to the NCBI dataset 

indicated a significantly low probability (P(MW) = 3.56E-48) that the age distribution was 

similar between H1N1 and H3N2.  This was confirmed by the Kolmogorov-Smirnov test, with a 

very low probability of P(KS) = 2.15E-50.  

 
Fig. 3: Empirical cumulative distribution of ages for patients with H1N1 (blue) and H3N2 (red), from the NCBI 

dataset in United States and Oceania combined, between 2000 and 2007. The low probabilities computed via Mann-

Whitney (P(MN)) and Kolmogorov-Smirnov (P(KS)) further confirm the results shown in Fig. 2. 

 

Analysis of the Oceania dataset also demonstrated the contrasting age-wise distributions for 

H1N1 and H3N2. Although, due to a large number of H3N2 isolates from younger patients, and 

a higher variance in the data, the Mann-Whitney test failed to demonstrate the dissimilarities 

(P(MW) = 4.19E-1), the Kolmogorov-Smirnov test did show a significant difference (P(KS) = 

4.03E-5) (Fig. 2, right). In addition, when the Oceania and United States datasets from years 

2000-2007 were combined, the same kind of disparate age trends between subtypes were seen: 

P(MW) = 3.77E-18 and P(KS) = 1.57E-25 (Fig. 3).  
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Fig. 4: Empirical cumulative distribution of ages for patients with H1N1 (blue) and H3N2 (red), from the NCBI 

dataset, in United States during the influenza seasons of 2006-2007 (left) and 2007-2008 (right). The significantly 

low probabilities computed via Mann-Whitney (P(MN)) and Kolmogorov-Smirnov (P(KS)) tests during separate 

influenza seasons show the consistency in our results among sub-portions of the data and refute the possibility that 

the previous statistical results are due to a unique season. 

 
Fig. 5: Empirical cumulative distribution of birth year for patients with H1N1 (blue) and H3N2 (red), from the 

NCBI dataset, in the United States, between 1995 and 2008. The significant statistical dissimilarity between the 

distribution for the year of birth (P(MW) = 2.04E-24 and P(KS) = 1.13E-35) hints to an existing immunity against 

one of the subtypes  in different age groups, possibly carried over from a previous pandemic. 

 

To refute the possibility that the statistical results could have arisen due to a unique season, and 

to check the consistency of the results within subsets of the data, we also studied each season 

individually. The only two seasons in the United States for which the NCBI database provided 
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data adequate for statistical analysis, were 2006-2007 and 2007-2008. We again observed 

different age trends between influenza subtypes in each of these seasons, and both the Mann-

Whitney and Kolmogorov-Smirnov tests indicated low probabilities that the distributions were 

the same (Figs. 4).  

 

In addition, we evaluated the United States dataset from the NCBI based on the birth year of the 

patients, in order to investigate the correlation between the previous pandemics and possible 

immunity to one of the subtypes (Fig. 5). Four percent of the H1N1 patients were born before 

1957 (the H2N2 pandemic), versus 24% of the H3N2 patients; 10% of the H1N1 patients were 

born before 1968 (the year of the H3N2 pandemic) versus 32% of the H3N2 patients. Also, 16% 

of the H1N1 patients were born before 1977 (the year of reemergence of H1N1), compared to 

42% of the H3N2 patients. The significant statistical dissimilarity between the distributions of 

year of birth (P(MW) = 3.33E-22 and P(KS) = 5.89E-34) hints at an existing immunity against 

one of the subtypes in different age groups, possibly carried over from a previous pandemic.  

 

These observations complement some of the previous findings on the seasonal evolution of 

influenza A virus. For example, Rambaut et al. (8), who studied a population that was spatially 

and temporally similar to the one in our analysis, identified a weaker antigenic drift in H1N1, 

leading to a global co-circulation of multiple H1N1 lineages and weaker H1N1 bottleneck effects 

between seasons compared to those of H3N2. If H1N1 does preferentially target a younger 

population, as our results indicate, a lower antigenic pressure and less-severe bottlenecks in the 

viral population, are expected. Furthermore, the different host population of H3N2 could explain 

the subtype’s lower diversity and more severe bottlenecks. 

 

In summary, we have analyzed the differences in patient age distribution between influenza A 

subtypes, using isolates from the 2006-2007 and 2007-2008 influenza seasons in New York 

State. These data show a compelling trend that younger persons exhibit ILI caused by the H1N1 

subtype statistically more frequently than do older persons. We confirmed the results by 

combining large datasets for North America and Oceania, taken from the NCBI database. The 

same trend is observed for every year and for each geographical grouping. These results suggest 
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that the two influenza subtypes, which are co-circulating around the globe, target two different 

age subpopulations with acute illness.  

 

Since March 2009 a new H1N1 strain of influenza A virus has been infecting humans. Most of 

the patients that show symptomatic disease from infection by this new strain are also young: 

60% of the reported cases are 18 years old or younger [9], which is very similar to the 

distribution of age in seasonal H1N1 patients: 69% in the United States and 49% in Oceania 

(Figure 2) and 68% when the Oceania and United States datasets from years 2000-2007 were 

combined (Figure 3).   

 

These results are especially pertinent for the assessment of risks in age-defined subpopulations. 

For example, in a year when H1N1 is predominant, public health resources should be focused on 

the younger populations, by introducing age-specific vaccines. From the point of view of 

epidemiological modeling, younger people have social patterns different from those of the older 

population, and it is likely that the two virus subtypes propagate differently in these distinct 

networks. This factor again has public health implications.    
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