5,130 research outputs found

    The Earned Income Tax Credit and Rural Families: Differences between Participants and Non-participants

    Get PDF
    The differences between rural low-income mothers who were participants and non-participants in the Earned Income Tax Credit (EITC) were examined. One-third of the 224 eligible mothers in a multi-state study did not claim the tax credit. Non-participants were more likely to be Hispanic, less educated, with larger families, borrowing money from family, and living in more rural counties. Participating mothers, on the other hand, were more food secure, perceived their household income as being adequate, reported recent improvements in their economic situation, were satisfied with life, and lived in states with a state EITC. Analysis of qualitative data revealed that rural mothers had many misconceptions about the EITC. These findings contribute to family and economic professionals’ understanding of why rural low-income families do not participate in the tax credit and assist in formulating policies and education/outreach efforts that would increase their participationEITC non-participants, EITC participants, rural low-income mothers, state EITC, rural low-income families

    Universality of Level Spacing Distributions in Classical Chaos

    Full text link
    We suggest that random matrix theory applied to a classical action matrix can be used in classical physics to distinguish chaotic from non-chaotic behavior. We consider the 2-D stadium billiard system as well as the 2-D anharmonic and harmonic oscillator. By unfolding of the spectrum of such matrix we compute the level spacing distribution, the spectral auto-correlation and spectral rigidity. We observe Poissonian behavior in the integrable case and Wignerian behavior in the chaotic case. We present numerical evidence that the action matrix of the stadium billiard displays GOE behavior and give an explanation for it. The findings present evidence for universality of level fluctuations - known from quantum chaos - also to hold in classical physics

    Small denominators, frequency operators, and Lie transforms for nearly integrable quantum spin systems

    Get PDF
    Based on the previously proposed notions of action operators and of quantum integrability, frequency operators are introduced in a fully quantum-mechanical setting. They are conceptually useful because another formulation can be given to unitary perturbation theory. When worked out for quantum spin systems, this variant is found to be formally equivalent to canonical perturbation theory applied to nearly integrable systems consisting of classical spins. In particular, it becomes possible to locate the quantum-mechanical operator-valued equivalent of the frequency denominators that may cause divergence of the classical perturbation series. The results that are established here link the concept of quantum-mechanical integrability to a technical question, namely, the behavior of specific perturbation series

    A Supersymmetry approach to billiards with randomly distributed scatterers

    Full text link
    The density of states for a chaotic billiard with randomly distributed point-like scatterers is calculated, doubly averaged over the positions of the impurities and the shape of the billiard. Truncating the billiard Hamiltonian to a N x N matrix, an explicit analytic expression is obtained for the case of broken time-reversal symmetry, depending on rank N of the matrix, number L of scatterers, and strength of the scattering potential. In the strong coupling limit a discontinuous change is observed in the density of states as soon as L exceeds N

    Correlation functions of scattering matrix elements in microwave cavities with strong absorption

    Full text link
    The scattering matrix was measured for microwave cavities with two antennas. It was analyzed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behavior can only be modeled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems

    Semantic distillation: a method for clustering objects by their contextual specificity

    Full text link
    Techniques for data-mining, latent semantic analysis, contextual search of databases, etc. have long ago been developed by computer scientists working on information retrieval (IR). Experimental scientists, from all disciplines, having to analyse large collections of raw experimental data (astronomical, physical, biological, etc.) have developed powerful methods for their statistical analysis and for clustering, categorising, and classifying objects. Finally, physicists have developed a theory of quantum measurement, unifying the logical, algebraic, and probabilistic aspects of queries into a single formalism. The purpose of this paper is twofold: first to show that when formulated at an abstract level, problems from IR, from statistical data analysis, and from physical measurement theories are very similar and hence can profitably be cross-fertilised, and, secondly, to propose a novel method of fuzzy hierarchical clustering, termed \textit{semantic distillation} -- strongly inspired from the theory of quantum measurement --, we developed to analyse raw data coming from various types of experiments on DNA arrays. We illustrate the method by analysing DNA arrays experiments and clustering the genes of the array according to their specificity.Comment: Accepted for publication in Studies in Computational Intelligence, Springer-Verla

    Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6′,7′-Dihydrospiro[Piperidine-4,4′-Thieno[3,2-c]Pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3

    Get PDF
    Mycobacterium tuberculosis is a major human pathogen and the causative agent for the pulmonary disease, tuberculosis (TB). Current treatment programs to combat TB are under threat due to the emergence of multi-drug and extensively-drug resistant TB. As part of our efforts towards the discovery of new anti-tubercular leads, a number of potent tetrahydropyrazolo[1,5-a]pyrimidine-3-ca​rboxamide(THPP) and N-benzyl-6′,7′-dihydrospiro[piperidine-4,​4′-thieno[3,2-c]pyran](Spiro) analogues were recently identified against Mycobacterium tuberculosis and Mycobacterium bovis BCG through a high-throughput whole-cell screening campaign. Herein, we describe the attractive in vitro and in vivo anti-tubercular profiles of both lead series. The generation of M. tuberculosis spontaneous mutants and subsequent whole genome sequencing of several resistant mutants identified single mutations in the essential mmpL3 gene. This ‘genetic phenotype’ was further confirmed by a ‘chemical phenotype’, whereby M. bovis BCG treated with both the THPP and Spiro series resulted in the accumulation of trehalose monomycolate. In vivo efficacy evaluation of two optimized THPP and Spiro leads showed how the compounds were able to reduce >2 logs bacterial cfu counts in the lungs of infected mice
    corecore