2,844 research outputs found
On the Distribution of Salient Objects in Web Images and its Influence on Salient Object Detection
It has become apparent that a Gaussian center bias can serve as an important
prior for visual saliency detection, which has been demonstrated for predicting
human eye fixations and salient object detection. Tseng et al. have shown that
the photographer's tendency to place interesting objects in the center is a
likely cause for the center bias of eye fixations. We investigate the influence
of the photographer's center bias on salient object detection, extending our
previous work. We show that the centroid locations of salient objects in
photographs of Achanta and Liu's data set in fact correlate strongly with a
Gaussian model. This is an important insight, because it provides an empirical
motivation and justification for the integration of such a center bias in
salient object detection algorithms and helps to understand why Gaussian models
are so effective. To assess the influence of the center bias on salient object
detection, we integrate an explicit Gaussian center bias model into two
state-of-the-art salient object detection algorithms. This way, first, we
quantify the influence of the Gaussian center bias on pixel- and segment-based
salient object detection. Second, we improve the performance in terms of F1
score, Fb score, area under the recall-precision curve, area under the receiver
operating characteristic curve, and hit-rate on the well-known data set by
Achanta and Liu. Third, by debiasing Cheng et al.'s region contrast model, we
exemplarily demonstrate that implicit center biases are partially responsible
for the outstanding performance of state-of-the-art algorithms. Last but not
least, as a result of debiasing Cheng et al.'s algorithm, we introduce a
non-biased salient object detection method, which is of interest for
applications in which the image data is not likely to have a photographer's
center bias (e.g., image data of surveillance cameras or autonomous robots)
PPARγ Pro12Ala polymorphism and risk of acute coronary syndrome in a prospective study of Danes
<p>Abstract</p> <p>Background</p> <p>Acute coronary syndrome (ACS) is a major cause of morbidity and mortality in the western world. Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in the regulation of the energy balance, adipocyte differentiation and lipid biosynthesis. The aim was to investigate if the polymorphism <it>PPARγ2 </it>Pro<sup>12</sup>Ala, which encodes a less efficient transcription factor, was associated with risk of acute coronary disease and if there were interactions between this polymorphism and factors that modify PPARγ activity, such as alcohol intake, smoking, and use of non-steroidal anti-inflammatory medicine.</p> <p>Methods</p> <p>A case-cohort study including 1031 ACS cases and a sub-cohort of 1703 persons was nested within the population-based prospective study Diet, Cancer and Health of 57,053 individuals.</p> <p>Results</p> <p>Homozygous male variant allele carriers of <it>PPARγ2 </it>Pro<sup>12</sup>Ala were at higher risk of ACS (HR = 2.12, 95% CI: 1.00–4.48) than homozygous carriers of the Pro-allele. Among men, there was a statistically significant interaction between genotypes and alcohol intake such that homozygous variant allele carriers with a low alcohol intake were at higher risk of ACS (HR = 25.3, CI: 16.5–38.7) compared to homozygous common allele carriers (p for interaction < 0.0001). Overall, the association was only observed among homozygous variant allele carriers. Thus, all the observed associations were obtained in subgroups including small numbers of cases. It is therefore possible that the observed associations were due to chance.</p> <p>Conclusion</p> <p>In the present study, there were no consistent associations between PPARγ Pro<sup>12</sup>Ala and risk of ACS, and no consistent interaction with alcohol, BMI, NSAID or smoking in relation to ACS.</p
Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli
The set of regulatory interactions between genes, mediated by transcription
factors, forms a species' transcriptional regulatory network (TRN). By
comparing this network with measured gene expression data one can identify
functional properties of the TRN and gain general insight into transcriptional
control. We define the subnet of a node as the subgraph consisting of all nodes
topologically downstream of the node, including itself. Using a large set of
microarray expression data of the bacterium Escherichia coli, we find that the
gene expression in different subnets exhibits a structured pattern in response
to environmental changes and genotypic mutation. Subnets with less changes in
their expression pattern have a higher fraction of feed-forward loop motifs and
a lower fraction of small RNA targets within them. Our study implies that the
TRN consists of several scales of regulatory organization: 1) subnets with more
varying gene expression controlled by both transcription factors and
post-transcriptional RNA regulation, and 2) subnets with less varying gene
expression having more feed-forward loops and less post-transcriptional RNA
regulation.Comment: 14 pages, 8 figures, to be published in PLoS Computational Biolog
A haplotype of polymorphisms in ASE-1, RAI and ERCC1 and the effects of tobacco smoking and alcohol consumption on risk of colorectal cancer: a danish prospective case-cohort study
<p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic variation in the human genome, and are of interest for the study of susceptibility to and protection from diseases. The haplotype at chromosome 19q13.2-3 encompassing the three SNPs <it>ASE-1 </it>G-21A, <it>RAI </it>IVS1 A4364G and <it>ERCC1 </it>Asn118Asn have been associated with risk of breast cancer and lung cancer. Haplotype carriers are defined as the homozygous carriers of <it>RAI </it>IVS1 A4364G<sup>A</sup>, <it>ERCC1 </it>Asn118Asn<sup>T </sup>and <it>ASE-1 </it>G-21A<sup>G</sup>. We aimed to evaluate whether the three polymorphisms and the haplotype are associated to risk of colorectal cancer, and investigated gene-environment associations between the polymorphisms and the haplotype and smoking status at enrolment, smoking duration, average smoking intensity and alcohol consumption, respectively, in relation to risk of colorectal cancer.</p> <p>Methods</p> <p>Associations between the three individual polymorphisms, the haplotype and risk of colorectal cancer were examined, as well as gene-environment interaction, in a Danish case-cohort study including 405 cases and a comparison group of 810 persons. Incidence rate ratio (IRR) were estimated by the Cox proportional hazards model stratified according to gender, and two-sided 95% confidence intervals (CI) and p-values were calculated based on robust estimates of the variance-covariance matrix and Wald's test of the Cox regression parameter.</p> <p>Results</p> <p>No consistent associations between the three individual polymorphisms, the haplotype and risk of colorectal cancer were found. No statistically significant interactions between the genotypes and the lifestyle exposures smoking or alcohol consumption were observed.</p> <p>Conclusion</p> <p>Our results suggest that the <it>ASE-1 </it>G-21A, <it>RAI </it>IVS1 A4364G and <it>ERCC1 </it>Asn118Asn polymorphisms and the previously identified haplotype are not associated with risk of colorectal cancer. We found no evidence of gene-environment interaction between the three polymorphisms and the haplotype and smoking intensity and alcohol consumption, respectively, in relation to the risk of colorectal cancer.</p
Individual rules for trail pattern formation in Argentine ants (Linepithema humile)
We studied the formation of trail patterns by Argentine ants exploring an
empty arena. Using a novel imaging and analysis technique we estimated
pheromone concentrations at all spatial positions in the experimental arena and
at different times. Then we derived the response function of individual ants to
pheromone concentrations by looking at correlations between concentrations and
changes in speed or direction of the ants. Ants were found to turn in response
to local pheromone concentrations, while their speed was largely unaffected by
these concentrations. Ants did not integrate pheromone concentrations over
time, with the concentration of pheromone in a 1 cm radius in front of the ant
determining the turning angle. The response to pheromone was found to follow a
Weber's Law, such that the difference between quantities of pheromone on the
two sides of the ant divided by their sum determines the magnitude of the
turning angle. This proportional response is in apparent contradiction with the
well-established non-linear choice function used in the literature to model the
results of binary bridge experiments in ant colonies (Deneubourg et al. 1990).
However, agent based simulations implementing the Weber's Law response function
led to the formation of trails and reproduced results reported in the
literature. We show analytically that a sigmoidal response, analogous to that
in the classical Deneubourg model for collective decision making, can be
derived from the individual Weber-type response to pheromone concentrations
that we have established in our experiments when directional noise around the
preferred direction of movement of the ants is assumed.Comment: final version, 9 figures, submitted to Plos Computational Biology
(accepted
Fluorescence Polarization and Fluctuation Analysis Monitors Subunit Proximity, Stoichiometry, and Protein Complex Hydrodynamics
Förster resonance energy transfer (FRET) microscopy is frequently used to study protein interactions and conformational changes in living cells. The utility of FRET is limited by false positive and negative signals. To overcome these limitations we have developed Fluorescence Polarization and Fluctuation Analysis (FPFA), a hybrid single-molecule based method combining time-resolved fluorescence anisotropy (homo-FRET) and fluorescence correlation spectroscopy. Using FPFA, homo-FRET (a 1–10 nm proximity gauge), brightness (a measure of the number of fluorescent subunits in a complex), and correlation time (an attribute sensitive to the mass and shape of a protein complex) can be simultaneously measured. These measurements together rigorously constrain the interpretation of FRET signals. Venus based control-constructs were used to validate FPFA. The utility of FPFA was demonstrated by measuring in living cells the number of subunits in the α-isoform of Venus-tagged calcium-calmodulin dependent protein kinase-II (CaMKIIα) holoenzyme. Brightness analysis revealed that the holoenzyme has, on average, 11.9±1.2 subunit, but values ranged from 10–14 in individual cells. Homo-FRET analysis simultaneously detected that catalytic domains were arranged as dimers in the dodecameric holoenzyme, and this paired organization was confirmed by quantitative hetero-FRET analysis. In freshly prepared cell homogenates FPFA detected only 10.2±1.3 subunits in the holoenzyme with values ranging from 9–12. Despite the reduction in subunit number, catalytic domains were still arranged as pairs in homogenates. Thus, FPFA suggests that while the absolute number of subunits in an auto-inhibited holoenzyme might vary from cell to cell, the organization of catalytic domains into pairs is preserved
Lesson learned from early and long-term results of 327 cases of coexisting surgical abdominal diseases and aortic aneurysms treated in open and endovascular surgery
Patients with abdominal aortic aneurysm (AAA) frequently have other abdominal pathologies of surgical interest (other diseases, OD). Out of 1,375 elective open aortic replacements for AAA, 315 cases with OD were subdivided in Group 1 (82 patients with “clean wound” OD) and Group 2 (233 patients with “clean-contaminated wound” OD). The results of the sub-groups in which OD was treated at the same time as AAA were analysed (1a, 66 cases and 2a, 86 cases) and compared with OD not treated at the same time as AAA (1b, 16 cases and 2b, 147 cases). EVAR was done in 12 patients with a infrarenal AAA and concomitant abdominal disease. In this group post-operative complications occured in two patients (endoleaks) and no sign of endograft infection was developed. Mean follow-up was 36 months. Mortality was 0% in Group 1a, 1b, 2b and 5.8% in Group 2a. In Group 1a there were one haemoperitoneum, one ischaemic colitis and one graft infection. In Group 1b there were 4 nefrectomies for renal carcinoma and three emergency hernia repairs within 18 months from AAA operation. In Group 2a the follow-up was uneventful. In Group 2b there was no acute complication of OD and 57.2% of patients were subsequently operated for OD. In the EVAR group the 30-day and late mortality rates were 0 and 25%, respectively and all deaths were cancer-related. Contemporary correction of OD in open surgery for AAA should be performed in clean wound cases, while clean-contaminated operations can be done only in selected cases. EVAR is a valid alternative technique to open vascular surgery for the concomitant treatment of aortic aneurysms and abdominal pathologies
Correlation of cutaneous tension distribution and tissue oxygenation with acute external tissue expansion
Today, the biomechanical fundamentals of skin expansion are based on viscoelastic models of the skin. Although many studies have been conducted in vitro, analyses performed in vivo are rare. Here, we present in vivo measurements of the expansion at the skin surface as well as measurement of the corresponding intracutaneous oxygen partial pressure. In our study the average skin stretching was 24%, with a standard deviation of 11%, excluding age or gender dependency. The measurement of intracutaneous oxygen partial pressure produced strong inter-individual fluctuations, including initial values at the beginning of the measurement, as well as varying individual patient reactions to expansion of the skin. Taken together, we propose that even large defect wounds can be closed successfully using the mass displacement caused by expansion especially in areas where soft, voluminous tissue layers are present
Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide
We investigated toxicity of 2-3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis
- …