37 research outputs found

    Low-Dosage Inhibition of DII4 Signaling Promotes Wound Healing by Inducing Functional Neo-Angiogenesis

    Get PDF
    Recent findings regarding Dll4 function in physiological and pathological conditions indicate that this Notch ligand may constitute an important therapeutic target. Dll4 appears to be a major anti-angiogenic agent, occupying a central role in various angiogenic pathways. The first trials of anti-Dll4 therapy in mice demonstrated a paradoxical effect, as it reduced tumor perfusion and growth despite leading to an increase in vascular density. This is seen as the result of insufficient maturation of the newly formed vasculature causing a circulatory defect and increased tumor hypoxia. As Dll4 function is known to be closely dependent on expression levels, we envisioned that the therapeutic anti-Dll4 dosage could be modulated to result in the increase of adequately functional blood vessels. This would be useful in conditions where vascular function is a limiting factor for recovery, like wound healing and tissue hypoxia, especially in diabetic patients. Our experimental results in mice confirmed this possibility, revealing that low dosage inhibition of Dll4/Notch signaling causes improved vascular function and accelerated wound healing

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology

    An updated view of hypothalamic-vascular-pituitary unit function and plasticity

    Get PDF
    The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic–pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment

    Seasonal incidence of major insect pests of bottle gourd (Lagenaria siceraria) in South-western Haryana

    No full text
    Bottle gourd is an important vegetable crop that fetches recurrent income from farmers. The present investigation was carried out during the kharif season of 2019 to study the incidence of prevailing four insect pests of bottle gourd in relation to weather. The seasonal incidence of major insect pests such as Aulacophora foveicollis Lucas, Bactrocera cucurbitae Coquillett, Aphis gossypii Glover and Bemicia tabaci Gennadius was studied. The fruit infestation by Bactrocera cucurbitae was initiated in the 34th SMW, and the maximum infestation was noticed in the 36th SMW. The fruit fly infestation was significant and positively correlated with evening relative humidity and rainfall. Aulacophora foveicollis incidence in bottle gourd was maximum in the 38th SMW. The beetle population was significantly and negatively correlated with minimum temperature and evening relative humidity. The maximum infestation of aphids and whitefly was noticed in the later stage of the crop during the 39th SMW, and the aphid population was significantly correlated with minimum temperature, evening relative humidity and rainfall, whereas the whitefly population was correlated significantly with evening relative humidity and rainfall
    corecore