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Abstract  

The discoveries of novel functional adaptations of the hypothalamus and anterior 

pituitary gland for physiological regulation have transformed our understanding of 

their interaction. The activity of a small proportion of hypothalamic neurons can 

control complex hormonal signalling, which is disconnected from a simple stimulus 

and subsequent hormone secretion relationship and is dependent on physiological 

status. The interrelationship of the terminals of hypothalamic neurons and pituitary 

cells with the vasculature has an important role in determining the pattern of 

neurohormone exposure. Cell in the pituitary gland form networks with distinct 

organizational motifs that are related to the duration and pattern of output. 

modification of these occurs in different physiological states, can persist after 

cessation of demand and results in enhanced function. Consequently, the 

hypothalamus and pituitary can no longer be considered as having a simple stratified 

relationship: with the vasculature they form a tripartite system, which must function 

in concert for appropriate hypothalamic regulation of physiological processes, for 

example reproduction. An improved understanding of the mechanisms underlying 

these regulatory features has implications for current and future therapies that correct 

defects in the hypothalamic–pituitary axes. In addition, recapitulating proper network 

organization will be an important challenge for regenerative stem cell treatment. 

 [H1] Introduction  



To maximize reproductive success, via the appropriate timing of ovulation, lactation, 

or body growth, the outputs of several hypothalamic–pituitary axes are dramatically 

altered. These adaptive changes occur over differing time scales, with varying 

frequencies and levels of predictability. For example, the occurrence of the increase in 

growth hormone (GH) output at puberty is largely predictable. On a relatively short 

time scale (days), the surge in luteinizing hormone (LH) secretion required for oestrus 

is an acute change that occurs regularly once every reproductive cycle and, in 

humans, continues for years in the absence of pregnancy. On a longer time scale 

(months to years depending on the species), the increase in prolactin required for 

lactation is maintained for a variable time (which depends on when offspring are 

weaned) and recurs at each pregnancy, but is unpredictable before gestation. These 

large changes in the output of the various pituitary axes require modification of both 

hypothalamic and pituitary function, but whether this effect is reversed on cessation 

of physiological demand likely reflects the expectation that increased output will 

recur. A mechanistic understanding of these alterations in hypothalamic–pituitary 

function is fundamental to interpret and treat defects that lead to endocrine diseases 

resulting from hormone deficiencies (for example, dwarfism) or excess (such as 

polycystic ovarian syndrome). In this Review, we will focus on three pituitary axes 

that have roles in driving changes in physiology; the gonadatropin, prolactin and GH 

axes. The level of our understanding varies for each of these axes and the features that 

might serve as general principles of hypothalamic-pituitary and other endocrine  

organ function will be highlighted in the text.  

 

[H1] Beyond stimulus-secretion coupling  

The path of communication between the brain and peripheral tissues is exemplified by 

muscle contraction, which requires the transfer of electrical signals from axons via the 

neuromuscular junction. This sequence of events, known as excitation-contraction 

coupling1, takes <1 s in mammals and adapts to altered functional demand. Similarly, 

in the hypothalamus just a few thousand neurons can also send signals to the 

periphery, in this case towards the median eminence (ME) via a specialized 

neurohaemal junction. In this junction, nerve terminal depolarization, either 

originating from the perikarya2 or the terminals themselves3, allows the sufficiently 

rapid entry of calcium ions to trigger exocytosis of neurohormones towards the first 



loop of the portal fenestrated capillaries4,5. This rapid (<1 s) sequence of events was 

termed ‘stimulus-secretion coupling’ due to the clear similarities with excitation-

contraction coupling5,6. Soon after release, neurohormones pervade the second loop of 

fenestrated capillaries within the pituitary gland, before binding to cognate receptors 

on endocrine cells to induce pituitary hormone exocytosis through a second ‘stimulus-

secretion coupling’ event (FIG. 1)7-10.   

In the second half of the twentieth century (and building on Harris’ work on the 

hypothalamus–pituitary axis11) the analogy between excitation-contraction and 

stimulus-secretion coupling was developed further12. However, important and 

fundamental differences exist between the two processes. Specifically, in the 

hypothalamus, endogenous rhythms with axis-dependent frequencies exist and the 

time scale for pituitary hormone release is measured in minutes to several hours13. 

Nevertheless, the analogy with neural control of locomotor activity led to a generally 

accepted model of hypothalamic regulation of pituitary function (FIG. 1).. 

Specifically, the excitation of specific hypothalamic neuron populations, determined 

by higher brain centres and peripheral feedback, is relayed as an unmodified series of 

signals to drive balanced pituitary hormone output11. The release of neurohormones 

and subsequent transportation and the effects on target cells were considered to be 

passive events in the regulation of pituitary hormone secretion, with only variation in 

the number of endocrine cells seeming to affect response levels11,14. Similarly, the 

alterations in gene expression and cell proliferation, which support maintenance of 

hormone output, were simply considered a correlated response to hypothalamic 

regulation of secretion15.  

In the early twenty-first century, a series of paradigm shifts in our understanding of 

the hypothalamic–pituitary system was established as a consequence of newly 

developed tools and techniques, including calcium imaging, fluorescent protein 

identification of specific cell types and two-photon microscopy, for use in genetically 

modified mice (eg16-18). The use of these methods have shown that both the pituitary 

gland and portal system can no longer be considered as static structures simply 

responding to neurohormonal regulation (BOX 1), although they have confirmed the 

pre-eminence of the hypothalamus as the driver of pituitary hormone output. In 

addition, hypothalamic neuron function has been found to be more dynamic than 



initially thought, which might contribute to modifications in its regulation of the 

pituitary under different physiological states (FIG. 1)2.  

 [H1] Gonadotroph axis 

The reproductive system is critically dependent upon pulsatile secretion of 

gonadotrophin-releasing hormone (GnRH) and LH; however, the understanding of 

pulse generation has been hampered by the complexity of the regulatory mechanisms, 

many of which will clearly be lost in in vitro preparations. Investigators working in 

the late 1980s using pituitary portal bleeding and microdialysis documented the 

pulsatile nature of GnRH release into the portal vasculature of the sheep, monkey and 

rat19-25, and showed a strong correlation between GnRH and LH pulses22,26,27. 

However, the scattered distribution and relative paucity of GnRH cell bodies limited 

the investigation of the cellular events that lead to pulsatile secretion of LH in vivo. In 

the past few years, the development of optogenetic techniques in rats and mice and an 

ultrasensitive ELISA capable of measuring LH levels in whole blood microsamples28 

has enabled investigators to dissect the GnRH neuron excitation parameters that 

generate LH pulses29. In these studies, the stimulation of just 60 GnRH neurons (~5% 

of the GnRH neurons) can trigger short-lived increases in LH secretion that resemble 

endogenous pulses29. Given the critical importance of GnRH neurons to the survival 

of all mammalian species, a degree of functional redundancy within this cell 

population is expected. This finding is consistent with studies in which just 10% of 

the GnRH neuron population is sufficient to maintain pulsatile LH secretion30,31. 

Varying the timing and frequency of stimulation  has  demonstrated  that  a brief  

(2 min) optogenetic stimulation at high frequency (10 Hz) evokes an LH pulse, 

whereas shorter periods and lower frequencies cannot elicit LH output that resembles 

endogenous pulses29. A bursting pattern of stimulation, which had been assumed to be 

most effective for pulse generation and the focus of many previous studies32, also 

failed to increase LH secretion. Whether such a stimulatory signal exists 

endogenously in vivo and where its origin might be is unknown, although a ‘GnRH 

pulse driver’ might be located in the mediobasal–hypothalamus, specifically at the 

level of neurons co-expressing kisspeptin, neurokinin B, as well as dynorphin A (so-

called ‘KNDy’ neurons)33,34.  

The generation of GnRH pulses, requires a coordinated release from multiple neurons 

through the synchronization of GnRH neuron population excitation. The cell bodies 



of GnRH neurons are scattered throughout the basal forebrain, while their projections 

have dendrodendritic bundling and/or shared synapses, and become highly 

concentrated around the ME35. Fascinatingly, these projections simultaneously 

receive and integrate synaptic inputs — they possess both axonal and dendritic 

characteristics, leading to their description as ‘dendrons’, before finally acquiring an 

axonal morphology within the ME and ramifying into numerous terminals that appose 

blood vessels36. Dendrons might be an ideal location for putative afferent axons to 

modulate the excitability of multiple GnRH neuron dendrites, and for multiple GnRH 

neurons to align their firing pattern, which thereby provides a potential mechanism for 

their synchronized activity directly in the mediobasal hypothalamus36. An additional 

source of pulse synchronization is in the ME, where hypophysiotropic GnRH neurons 

terminate within the external zone close to endothelial cells of the portal 

vasculature37. Endothelial cells in the ME might modulate GnRH release through 

nitric oxide secretion38-40 (reviewed elsewhere41). At the ME, nitric oxide is 

spontaneously released from an endothelial source and follows a pulsatile and 

cyclic pattern of secretion38, and inhibition of nitric oxide synthesis within the ME 

can disrupt reproductive cyclicity39. Conversely, in the GnRH neuron perikarya, basal 

nitric oxide synthase activity might provide the tonic inhibition of the GnRH neural 

system required to maintain nadir levels of LH40.  

Once released into the ME, the transport of GnRH to the pituitary, and the pattern of 

gonadotroph exposure to the neurohormone, have been largely assumed to represent a 

simple linear process22. However, the use of fluorescent tracking using 4 kDa dextran, 

which mimics the size of most hypothalamic neurohormones, has shown that the 

diffusion processes, both at the level of the ME and the pituitary capillaries, are 

complex and non-linear8. Consequently, the portal vessel network might function as a 

‘physical integrator’, enabling neurohormones to be transferred from the ME to the 

gonadotroph within a few seconds42. Once in the blood stream, the moderately rapid 

clearance rate (which varies between species) of LH generates the specific 

asymmetric pulse shape of this hormone, which is characterized by a fast increase 

immediately followed by a slower decrease28. Importantly, a faithful delivery of the 

pulsatile pattern of GnRH secretion to the pituitary is crucial for gonadotroph 

function43-46. For example, high GnRH pulse frequencies (>1 pulse per h) activate LH 

production, whereas low frequencies (<1 pulse per 2–3 h) preferentially induce 



follicle-stimulating hormone (FSH) synthesis and release47. Overall, the intricate 

relationships between pulsatile GnRH release, secretory competency of the pituitary 

gonadotrophs and regulatory mechanisms within the vasculature generate the 

rhythmic fluctuations in LH secretion.  

[H3] GnRH and LH surge generation 

The GnRH/LH surge mechanism is sex specific and normally occurs only in 

women48,49. During the oestrous cycle, increasing concentrations of plasma oestrogen 

alter feedback to the GnRH neuronal afferent networks and gonadotrophs from 

negative to positive to induce the gonadotrophin surge50-52. That the oestrogen-

responsive kisspeptin neurons in the rostral periventricular area of the third ventricle 

have a critical role in enabling ovulation in rodents by activating GnRH neurons is 

now well accepted53.  Importantly, the relative contribution of the hypothalamic and 

pituitary levels to the oestrogen-induced gonadotropin surge seems to be species-

dependent, with the latter the predominant mechanism in human and non-human 

primates54. In the female sheep, the GnRH surge is composed of high-frequency 

pulsatile events superimposed on a constantly elevated level of GnRH release, 

although whether the surge is driven by a fundamentally altered pattern of GnRH 

secretion55, or by a simple increase in the frequency of pulsatile secretion is unclear56. 

This huge increase in GnRH secretion continues for a period of 24 h, considerably 

longer that the duration of the LH surge it induces, before returning to a strictly 

episodic pattern of release25,55,57. The firing pattern of GnRH neurons needed to 

generate the GnRH/LH surge is unknown. However, it is reasonable to assume that 

the prolonged firing of an increased number of GnRH neurons is required for the 

secretion of surge levels, compared with that required for a pulse. Indeed, in 

transgenic mice with a dose-dependent reduction in GnRH neuron migration, 10% of 

the normal GnRH neuronal content failed to rescue ovulation, but cyclicity was 

restored when approximately 30% of the GnRH population was present31.  

In addition to the putative change in GnRH population electrical activity, anatomical 

changes are found within the external zone of the ME where GnRH nerve terminals 

are ensheathed by tanycytes58,59 (Fig. 2)  The cellular conformation changes with 

fluctuating oestrogen profiles throughout the oestrous cycle. For example, in rats, 

semaphorin-7a-dependent structural remodelling of tanycytes occurs during the 



preovulatory surge, resulting in release of the engulfed axons and direct access of 

GnRH nerve terminals to the portal vasculature60 (FIG. 2). By contrast, fenestrated rat 

endothelial cells of the hypothalamic–hypophyseal portal vessels release semaphorin-

3A, which is thought to induce GnRH neuron axonal growth and sprouting within the 

ME as a function of the oestrous cycle61. These mechanisms are likely to enable the 

generation of high concentrations of GnRH, which evoke the GnRH/LH surge, to be 

released into the pituitary portal circulation62,63. 

Within the pituitary, the distinct network organization of gonadotrophs64 and their 

large scale reorganization during puberty65 suggests that communication mediated by 

cell contact between gonadotrophs might have a functional role in the regulation of 

gonadotrophin output (Box 1). However, this organisation has not been studied in the 

same detail as that of other pituitary axes to date. Although the dynamic gonadotroph 

responses at the time of the proestrous surge have not yet been described in vivo, 

sampling of pituitaries at single time points in rats and sheep suggest that changes 

occur in gonadotrophin subunit expression, granule distribution and GnRH receptor 

abundance66,67. Sequencing of mRNA isolated from gonadotrophs of the anterior 

pituitary glands from female mice reveals that genes regulating the secretory process, 

blood pressure and cell adhesion were also enriched during proestrus68. Likewise, 

immortalized cell lines and cells in pituitary slices increase their cellular movement 

following GnRH stimulation69, and extend cellular processes and increase their 

cellular movement at puberty65 (FIG 3 and Box 1). These findings suggest that 

changes in the relationship of the gonadotroph network with the vasculature might 

modify the secretory response of gonadotrophs70.  

[H3] Clinical relevance 

The mechanisms that underlie both pulsatile secretion and surge generation of LH 

have important implications for the treatment of infertility in women. For example, 

polycystic ovarian syndrome (PCOS), the most common anovulatory cause of 

infertility71 affecting >100 million women worldwide, is associated with a 

dysregulation of the normal pattern of LH secretion72. Whether the origin of this 

multi-factorial disorder is at the level of the hypothalamic–pituitary axis is 

unknown73, but PCOS is characterized by increases in GnRH pulse frequency and 

sensitivity of the pituitary gland to the neurohormone74,75. Consequently, potential 

interventions that modify the dynamics of GnRH output, its transport to the ME or its 



actions in the pituitary might have implications for the treatment of PCOS. This is 

also the case for congenital hypogonadotropic hypogonadism, which results from a 

pituitary or a hypothalamic defect with or without anosmia76. Several novel gene 

mutations that are associated with this disorder have been identified, including those 

encoding neuropeptides (such as kisspeptin), transcription factors (chromodomain 

helicase DNA-binding 7) and G-protein coupled receptors (GnRHR)77. To induce 

female fertility, hypogonadotropic hypogonadism of pituitary origin can be reversed 

by subcutaneous injections of FSH followed by human chorionic gonadotrophin or 

LH to trigger ovulation76. Conversely, hypogonadotropic hypogonadism of 

hypothalamic origin can be treated using GnRH pumps to restore pituitary hormone 

secretion76. Pulsatile GnRH has the advantage of decreasing the risk of multiple 

pregnancy and ovarian hyperstimulation syndrome78. In both situations, the pulsatility 

of GnRH or the rhythmic secretion of LH and/or FSH is required to obtain sufficient 

follicular maturation and proper ovulation76. Advances in understanding of GnRH 

secretion and its interactions with LH are essential for designing novel, and indeed 

modifying existing, therapies for hypogonadotropic hypogonadism. For example, an 

estimated 22% of patients with this disease, who are yet to undergo treatment, have 

transient phases of normal fertility79. The underlying mechanisms and relevant 

therapeutic interventions to maintain this phenomenon might be elucidated by further 

investigation of pulsatility and rhythmicity. 

 

[H1] The prolactin axis 

The prolactin axis is unique among the pituitary hormonal systems, as in men and 

non-lactating women it can be considered a system primed for activation but tonically 

inhibited by hypothalamic dopamine80. In this situation, low concentrations (<25 

ng/ml) of circulating prolactin are maintained by short-loop feedback, with prolactin 

receptor-mediated stimulation of dopamine neuron firing rate leading to an increase in 

catecholamine production81 and output2. The timescale of the feedback response to 

prolactin (~10–20 min) could be explained by coordinated release of dopamine from 

multiple neurons2. One possible mechanism is the coordinated changes in firing rates 

of a subset of tuberoinfundibular dopamine neurons over tens of minutes; these 

correlate with episodic dopamine secretion recorded from multiple terminals at the 

median eminence in mice2. Gap junctions and local dendritic dopamine release have 



been proposed to mediate this activity82,83, and integration of single cell firing rates 

seems to be involved in the generation of longer dopamine release output events (N. 

Romano and P. Mollard, unpublished data).  

Variations in prolactin output occur in virgin female rats as a surge at proestrus, 

which coincides with that of LH84. Prolactin also increases following vaginal 

stimulation of both rats85 and mice86 as twice daily surges. These surges are 

coordinated by signals from the suprachiasmatic nucleus87, most likely through the 

actions of vasoactive-intestinal peptide88. At the level of the pituitary, lactotrophs 

form a network of honeycomb motifs (Box 1) that allow the congregation of cells 

along the fine pituitary capillary network (FIG. 3)89. This organization supports low 

levels of cell-cell coordination, with a small proportion (~1–10%) of cells acting as 

coordinating nodes by functionally connecting distant ensembles90. In addition to 

synchronizing Ca2+ activity, cellular organization also mediates the coordination of 

gene transcription, with gap junction signalling enabling local correlation of bursts of 

transcriptional activity that are otherwise randomly timed91,92. This mechanism 

resembles quorum-sensing where apparently random systems display complex 

activity as long as the components (in this case the cells) can interact, and might 

contribute to hormone gene expression and cell proliferation92-94. Precisely how gap 

junctions might orchestrate this mechanism remains unknown.  

[H3] Increased prolactin output during lactation 

The long-term requirement for large increases of circulating prolactin in lactation is 

associated with a decrease in dopamine output, which begins in late pregnancy and is 

coincident with a surge of pituitary prolactin secretion95 (FIG. 2). The dopamine tone 

needs to be strongly decreased throughout lactation to enable the necessary increase 

in circulating prolactin, and is mediated by a decrease in phosphorylation of tyrosine 

hydroxylase, the rate-limiting enzyme for dopamine synthesis95. This mechanism is 

not the result of a reduced feedback of prolactin on dopamine neurons, which remain 

electrically responsive at the level of the cell body, but rather, neuronal firing 

becomes uncoupled from dopamine secretion2. Remarkably, the reduction in 

dopamine tone is accompanied by the production of opioids, which might enable 

these neurons to stimulate prolactin secretion96,97. 



In concert with changes in the hypothalamic inhibition of prolactin secretion, 

substantial alterations occur in the pituitary to support the 10–50-fold increase in 

prolactin secretion that is required for milk production in mammals98. In humans and 

rats, this increased hormone secretion is generally accompanied by proliferation and 

hypertrophy of lactotrophs, although the studies describing hypertrophy are based on 

2D histological studies98. By contrast, in lineage tracing and FACS studies in mice, 

lactotrophs become hypertrophied during lactation and increase their volume 

threefold without the accompanying increase in number99. Other investigators have 

confirmed these findings, and also showed that the lactotroph network in situ becomes 

highly-connected during lactation, which is associated with the strength of the 

suckling stimulus100. This increase in structural connectivity leads to an ~100% 

increase in the proportion of the subpopulation of lactotrophs that function as 

coordinating nodes and orchestrate increased output of prolactin100.  

[H3] Memory of prolactin demand after weaning  

At weaning, a rapid decrease in prolactin secretion occurs as a result of a return of 

dopamine inhibition101. In rodents101,102 and humans103 basal prolactin secretion is 

reduced below that of virgin animals, which might reflect an enhanced pituitary 

response to dopamine inhibition104. Strikingly, and despite this reduction in basal 

prolactin secretion, lactotrophs remain enlarged and well-connected with each other at 

both the structural and functional levels, with a twofold increased number of nodes, 

which persists for many months after lactation has ceased100. Such hard-wiring or 

‘memory’ of previous stimuli, which was previously thought to only exist for neurons 

and immune cells, leads to augmented network-mediated lactotroph calcium activity 

during suckling of subsequent litters, which drives even higher concentrations of 

prolactin100. This mechanism is independent of reproductive experience per se, since 

it can be prevented by reducing the suckling demand100.  

[H3] Clinical relevance 

The dysregulation of the prolactin axis, owing to either pituitary adenomas105 or as an 

adverse effect of treatment with antipsychotic drugs106, leads to impaired fertility. 

Hyperprolactinaemia has a prevalence of ~10 to 30 per 100,000 in men and women, 

respectively, and is the second most common cause of infertility in women after 

PCOS107. Whilst treatment with commonly-used dopamine receptor agonists is an 



effective treatment of the majority of hyperprolactinaemic patients, side effects of 

these drugs including nausea, headaches and postural hypotension leads to 

compliance problems108. Clearly, an understanding of the interactions that lead to 

altered dopamine output and the response of the pituitary might help to identify novel 

treatment strategies for this disease. In rodent studies, prolactin seems to affect 

multiple neuroendocrine axes, including those regulating fertility, body weight and 

appetite, stress and maternal behaviour80 and these warrant further study to determine 

the potential effects of its over-secretion in humans. For example, 

hyperprolactinaemia might lead to changes in GnRH neuron activity via interactions 

with the GPR54/kisspeptin pathway in mice109 and GnRH pulsatility has been 

reinstated in mice with physiological hyperprolactinaemia by administration of 

kisspeptin110. By contrast with the study in mice where an acute high dose of prolactin 

was delivered peripherally109, in studies treating sheep with a chronic centrally 

administered low (10,000-fold lower) prolactin dose, no effects of prolactin on 

hypothalamic kisspeptin expression have been seen111. An improved understanding of 

these pathways could aid the development of treatments for women with 

hyperprolactinaemia that is resistant to dopamine agonists108.  

[H1] The GH axis  

In humans and animals, such as cattle and horses, in which the measurements can be 

taken, pulsatile GH output is present from birth112-114. However, the output is 

markedly increased at puberty when sexually-dimorphic body growth occurs115. Since 

the discoveries of GH releasing hormone (GHRH) and somatostatin that control GH 

secretion from pituitary somatotrophs115-117, a remarkable advancement our 

understanding of GH pulse generation during critical physiological windows has 

taken place.  

[H3] Pulsatile GHRH output 

Using genetically-modified mouse models with GHRH neurons marked with green 

fluorescent protein118, several investigators have defined the mechanisms that underlie 

pulse generation using ex vivo slices of brain. Before puberty, GHRH neurons are 

excitable neuroendocrine neurons with complex synaptic inputs119. These early stages 

of hypothalamic development ensure appropriate regulation of the somatotroph axis, 

as shown in the Ames dwarf mice in which loss of GH leads to a compensatory 



increase in GHRH cell number120. Additionally, steroid exposure in young animals 

can have programming effects on the GHRH neuron population, with testosterone 

exposure in neonates permanently increasing adult GHRH cell number and GHRH 

gene transcription121. Modification of these synaptic inputs and electrical properties 

over the first 6 weeks of postnatal life correlates with and likely drives, at least in 

part, increased pituitary GH output and sexual dimorphism122. The intrinsic hourly 

rhythms of GHRH neuronal activity predicted by simulation studies of in vivo GH 

pulsatility have not been indentified119,123, however, somatostatin can generate GHRH 

neuron pulsatile output by delaying oscillations of action potential firing via a 

recurring inhibition of inhibitory GABAergic interneurons (that is, inhibition of 

inhibition)123. Consequently, somatostatin can both acutely inhibit the excitability of 

GHRH neurons and also promote their patterned output together with more sustained 

GHRH neuron stimulation in response to other stimuli in the brain (for example, 

acetylcholine122) and peripheral tissues (such as, ghrelin)117.   

[H3] Modification of pituitary somatotroph output 

No full description of the in vivo dynamics of GHRH and somatostatin neurons and 

their regulation of pituitary somatotrophs exist. This event can be viewed as a three-

step process: delivery of neurohormone to target cells; cellular secretory responses to 

regulation; and entry of pituitary hormone into the peripheral circulation8. In vivo 

imaging of the mouse portal system and somatotroph network have provided insights 

into the first step in this process and the role of the vasculature in shaping the pattern 

of exposure of the pituitary to hypothalamic neuropeptides8. In this study, delivery of 

neuropeptides such as GHRH to the somatotroph network, which extends throughout 

the pituitary gland, follows specific vascular/capillary routes and results in specific 

temporal patterned regional regulation rather than a homogenous exposure of the 

whole pituitary to the secretagogue. In addition, the initial stimulation by GHRH 

evokes a coordinated enhancement of oxygen supply to the stimulated somatotroph 

network via increased capillary blood flow, which provides fuel for energy-depleting 

secretory responses. Indeed, this study also demonstrated that capillaries closely line 

the clusters and strings of cells that form the GH cell, which suggests an important 

role of local oxygen regulation on GH release (Figure 3). The dynamic association of 

gonadotrophs with the vasculature, which varies through the ovarian cycle65, suggests 

that this situation might also be the case for other pituitary axes. The second step in 



pituitary regulation has been characterized using ex vivo data from acute pituitary 

slices where the somatotroph network organization is preserved, in which the 

homotypic network mediates coordination of stimulation, triggering long-lasting GH 

secretion124 (Box 1) These studies have also shown that network organization is likely 

to have a major role in the increased GH output at puberty. In particular, using males 

the study showed that the volume of the GH network undergoes large changes relative 

to its surface area that coincides with the onset of puberty, before gradually returning 

to normal prepubertal levels by day 100 in mice16. These changes occur with a timing 

that is coincident with the increased pulse output of GH associated with puberty in 

males and are blocked by castration, which also prevents pubertal changes in GH 

output16. A direct effect of sex steroids on organisation of pituitary cells into 

homotypic networks is apparent from the rapid and dramatic increased motility of 

somatotrophs in ex vivo pituitary cultures treated with oestradiol125. These findings 

highlight the importance of somatotroph network organization and its plasticity in the 

generation of pituitary somatotroph output. The vasculature also has an important role 

in somatotroph output, where in vivo imaging shows that capture of secreted GH is a 

controlled event where the perivascular space acts as a gate-keeper for hormone entry 

into the capillary lumen8. The relationship between cellular network organization and 

the vasculature in the pituitary is, therefore, central to the delivery of incoming 

hypothalamic signals, and the build-up of GH pulses within capillaries. 

[H3] Clinical relevance 

GH deficiency resulting from congenital defects or acquired following traumatic brain 

injury, pituitary tumours or cranial irradiation126,127, is commonly treated with a daily 

subcutaneous dose of recombinant GH in childhood to increase growth rate128. 

However, considerable uncertainty exists regarding the optimal dosage or regime, and 

current treatments by injection of GH do not fully recapitulate the physiological 

pattern of GH secretion115. One potential therapy is repopulation of the pituitary with 

stem cells, which have been identified in the mouse129. However, such approaches are 

likely to require the recapitulation of the normal cellular organization to achieve 

normal pulsatility and homeostatic regulation.  

Patients with acromegaly, which results from a GH secreting pituitary adenoma, 

frequently have glycaemic disorders: a lack of GH pulsatility modifies lipolysis, 



whereas overall GH hypersecretion can induce insulin resistance130. Consequently, an 

improved understanding of the mechanisms that determine the pattern of GH output 

might help to define new therapeutic options for dyslipidaemia or diabetes mellitus. In 

addition, GH pulsatilty also has an important role in a subgroup of patients who have 

clinical acromegaly with increased insulin-like growth factor 1, but unaltered mean 

24-h GH concentration compared with healthy controls131,132. Altered GH pulsatility 

might explain the clinical presentation of this sub-group of patients, and our new 

understanding of the mechanisms underlying patterning of pituitary output might 

explain the abnormal GH axis function in these individuals and warrants further 

investigation.   

[H1] Conclusions  

The examples in this Review provide new insights into regulation of three 

hypothalamic–pituitary axes and demonstrate that these mechanisms are not a simple 

relay of stimulus-secretion coupled events. The disconnection or modulation of 

hypothalamic excitation and neurohormone release, and an active role of the 

vasculature and pituitary in the network-mediated modification of responses, 

demonstrates that the previous stimulus-secretion coupled  view of the hypothalamic–

pituitary system is over-simplistic. Advances in imaging technologies are allowing us 

to understand more about the organization and function of this axis (FIG. 4). Given 

that the hypothalamus contains no more than a few thousand parvocellular neurons, 

the rapid development of techniques for interrogating neuronal function should enable 

the characterization of this structure’s regulation and output. Such studies will be 

invaluable for the deeper understanding of mammalian physiology, as this region 

controls a much larger panel of known body functions than any other brain region.  

The regulation of pulsatile pituitary secretion must now be considered as an 

integration of hypothalamic, vasculature and pituitary regulation, which has further 

implications for the understanding of disease. For example, the identification of 

kisspeptin has provided an exciting new target for the treatment of infertility133. The 

uncoupling of neuronal excitation and hormone output also has deeper implications 

such as in the case of ageing. For example, the reduction in GH output with age might 

be due to a failure of neurohormone secretion from GHRH neurons without any 

change in their excitation129 (Figure 2). The human pituitary gland can be accessed by 



transphenoidal surgery, which makes this structure an ideal target organ for 

regenerative therapy134. The pituitary cell networks and their relationship with the 

vasculature must be considered for such therapy and the microenvironment clearly 

has an important role in the regulation of the pituitary gland, which might also affect 

the development of tumours135. Finally, as pituitary networks are sensitive to 

peripheral regulation and their modification can persist for extended periods, they are 

a potential target for endocrine disrupting chemicals (EDCs). Indeed, the 

identification of bisphenol A-mediated reduction of expression of ICAM5 in the 

pituitary136 has led us to speculate that some EDC effects might be mediated by 

changes in pituitary organization137. These possibilities require further investigation 

for the understanding of both the aetiology and treatment of diseases associated with 

pituitary hormones.    
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Key points  



• The activity of hypothalamic neurons is modified by inputs leading to 

heterogeneous activity; a small proportion of the total population can drive 

pituitary hormone pulsatility 

• Neurohormone output can vary following neuron excitation according to 

physiological status, which might also lead to declining neuroendocrine output 

with age  

• The release of hypothalamic factors into the blood is modified by alterations 

in the juxtaposition of nerve terminals with the vasculature and tanycytes in 

the median eminence 

• Cells in the pituitary gland form homotypic networks, the organization of 

these relationships with the vasculature are distinct for each endocrine axis, 

which modifies responses to regulatory factors and patterns of output in 

response to demand  

• Reorganisation of the pituitary network can store long-term memories of 

increased output and learn to increase function on repeated challenge  

• Understanding the importance of coordinated hypothalamic–vasculature–

pituitary function provides new understanding of a range of endocrine axes 

defects and targets for novel therapies  

 

Figure 1 |A dynamic interplay between hypothalamic neuron output, the 

vasculature and the pituitary response alters hormone output. a) The concept of 

stimulus-secretion coupling considered pituitary hormone output to result from a 

cascade of events dictated by the pattern of regulatory neuron excitation. b) Recent 

studies have shown that this view (a) is too simplistic: alterations at the level of 

neuron response to excitation, release of hypothalamic factors in the median eminence 

and pituitary cell responses are all capable of adapting output of hormone to the 

periphery. 

Figure 2 |Output of hypothalamic regulatory factors to the median eminence is 

mediated by a number of processes. a) A simplified view of tanycyte regulation of 

gonadotrophin releasing hormone (GnRH) release. Access of GnRH nerve terminals 

to capillaries at diestrus is blocked by tanycyte ensheathment, which retracts of at 

proetrus, possibly in response to oestrogen-driven secretion of nitric oxide (NO), 

leading to formation of a direct neurohaemal junction and augmented release of 



GnRH. b) Feedback inhibition of prolactin secretion is reduced in lactation by an 

uncoupling of dopamine production and release from neuronal electrical activity and 

possible switch to production and secretion of opioids. c) Growth hormone releasing 

hormone (GHRH) secretion is reduced in late adulthood, with an altered localisation 

of nerve terminals and redistribution of secretory vesicles to autophagic vacuoles, 

both resulting in reduced neuropeptide release to the portal circulation.  

Figure 3 Pituitary cells form homotypic networks, with distinct organisational 

motifs and relationship with the vasculature, which alter with physiological 

status. a) Gonadotroph cells are arranged as strings of cells which align with 

capillaries and make direct contact with the vasculature through protrusions at 

proestrus. b) The organisation of lactotroph into honeycomb structures in virgin mice 

becomes more pronounced in animals which are lactating, with an alteration of cell-

cell contacts, increase in cell size, and appearance of cells which act as hubs of 

functional connectivity (dark orange).  This change in structural and functional 

organisation is maintained for months following cessation of physiological demand at 

weaning.  c) The homotypic network of somatotrophs changes dramatically at 

puberty, with the formation of large clusters which are linked by strands of cells in 

young males.  The strands of cells found in juvenile and mature animals are closely 

associated with capillaries, which also line the post-pubertal somatotroph clusters 

Figure 4 | Updated view of the hypothalamic–vascular–pituitary unit. In the past 
decade, a more complex relationship between the hypothalamus and pituitary than 
previously appreciated has emerged, in part owing to new imaging techniques which 
now allow high-resolution optical imaging of the hypothalamic-vascular-pituitary unit 
in living animal models. a | At the level of the parvocellular neurons, complex inputs 
modify the excitation of neurons, which can vary coupling with neurohormone output 
at terminals of the median eminence (ME) through modification of intracellular 
pathways. b | Alterations in tanycyte ensheathment and the anatomical location of 
neuron terminals modify their interactions with the vasculature, changing the 
dynamics of neurohormone release. c | In the pituitary gland, changes in blood flow in 
the portal circulation alter the pattern of exposure of pituitary cells to neurohormone 
and nutrient supply to facilitate secretion. d | Cells of the pituitary gland, such as 
somatotrophs, are organised into intermingled networks with distinct morphological 
features, which can be altered to meet physiological demand, and relationships with 
the vasculature. 

  



 
Box 1 | Organization of pituitary cells into homotypic networks  

Somatotrophs, corticotrophs, gonadotrophs and lactotrophs form networks with the following 
features16,64,65,100,138,139 

• The lineages have distinct developmental programmes  
o Placement of each endocrine cell network occurs at distinct stages of pituitary 

organogenesis, before expansion in early postnatal life16,64  
• Networks have distinct motifs and interact with the vasculature   

o Somatotrophs organise as clusters linked with strands16 along the capillary 
network138, while lactotrophs form a honeycomb structure100 aligned with these 
vessels138. Gonadotrophs connect to one or more blood vessels via their protrusions65, 
whereas the corticotroph network has a loose arrangement64. Cell-type specific  
homotypic network organisation and their distinct relationships with the vasculature 
are  likely to affect levels and timing of hormone release 8, 16, 70, 100, 142. 

o  The mechanisms underlying the distinct endocrine cell-vascular relationship are 
unclear, although one factor shown to be important is  Prop1, since its  loss leads to 
failure of organ vascularization143  

• Hypothalamic and steroidal factors generate network motifs  
o Loss of growth hormone-releasing hormone (GHRH) leads to isolated somatotrophs, 

whereas somatotroph ablation with intact GHRH stimulation results in clusters of 
cells that are isolated from each other140.  Gonadal steroids also influence 
somatotroph cell clustering and cell movement leading to reorganisation124,125 

• Pituitary networks have functional relevance 
o Pituitary networks integrate, amplify and propagate hypothalamic signals that arrive 

from the median eminence. For example, the male somatotroph network responds to 
GHRH input with large, coordinated, oscillatory Ca2+ increases that outlast the 
stimulus to drive large excursions in hormone secretion124.  

• Endocrine and non-endocrine homotypic networks interact  
o Communication between each pituitary hormonal cell-type, as well as the non-

hormonal folliculostellate cells, via gap-junctions mediated coupling91,100 and  
paracrine and autocrine interactions138,141, can modify output of each of the pituitary 
hormones and allow cross-talk between pituitary axes. 

o Loss of specific pituitary hormonal cell types influences the network organisation of 
heterotypic cells. For example, changes in the gonadotroph network occur following 
alteration of  corticotroph terminal differentiation in mice64. 
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