1,556 research outputs found
Nonlinear Hydrodynamics from Flow of Retarded Green's Function
We study the radial flow of retarded Green's function of energy-momentum
tensor and -current of dual gauge theory in presence of generic higher
derivative terms in bulk Lagrangian. These are first order non-linear Riccati
equations. We solve these flow equations analytically and obtain second order
transport coefficients of boundary plasma. This way of computing transport
coefficients has an advantage over usual Kubo approach. The non-linear equation
turns out to be a linear first order equation when we study the Green's
function perturbatively in momentum. We consider several examples including
term and generic four derivative terms in bulk. We also study the flow
equations for -charged black holes and obtain exact expressions for second
order transport coefficients for dual plasma in presence of arbitrary chemical
potentials. Finally we obtain higher derivative corrections to second order
transport coefficients of boundary theory dual to five dimensional gauge
supergravity.Comment: Version 2, reference added, typos correcte
AdS_7/CFT_6, Gauss-Bonnet Gravity, and Viscosity Bound
We study the relation between the causality and the positivity of energy
bounds in Gauss-Bonnet gravity in AdS_7 background and find a precise
agreement. Requiring the group velocity of metastable states to be bounded by
the speed of light places a bound on the value of Gauss-Bonnet coupling. To
find the positivity of energy constraints we compute the parameters which
determine the angular distribution of the energy flux in terms of three
independent coefficients specifying the three-point function of the
stress-energy tensor. We then relate the latter to the Weyl anomaly of the
six-dimensional CFT and compute the anomaly holographically. The resulting
upper bound on the Gauss-Bonnet coupling coincides with that from causality and
results in a new bound on viscosity/entropy ratio.Comment: 21 page, harvmac; v2: reference adde
Schr\"odinger Holography with and without Hyperscaling Violation
We study the properties of the Schr\"odinger-type non-relativistic holography
for general dynamical exponent z with and without hyperscaling violation
exponent \theta. The scalar correlation function has a more general form due to
general z as well as the presence of \theta, whose effects also modify the
scaling dimension of the scalar operator. We propose a prescription for minimal
surfaces of this "codimension 2 holography," and demonstrate the (d-1)
dimensional area law for the entanglement entropy from (d+3) dimensional
Schr\"odinger backgrounds. Surprisingly, the area law is violated for d+1 < z <
d+2, even without hyperscaling violation, which interpolates between the
logarithmic violation and extensive volume dependence of entanglement entropy.
Similar violations are also found in the presence of the hyperscaling
violation. Their dual field theories are expected to have novel phases for the
parameter range, including Fermi surface. We also analyze string theory
embeddings using non-relativistic branes.Comment: 62 pages and 6 figures, v2: several typos in section 5 corrected,
references added, v3: typos corrected, references added, published versio
The Weak Gravity Conjecture and the Viscosity Bound with Six-Derivative Corrections
The weak gravity conjecture and the shear viscosity to entropy density bound
place constraints on low energy effective field theories that may help to
distinguish which theories can be UV completed. Recently, there have been
suggestions of a possible correlation between the two constraints. In some
interesting cases, the behavior was precisely such that the conjectures were
mutually exclusive. Motivated by these works, we study the mass to charge and
shear viscosity to entropy density ratios for charged AdS5 black branes, which
are holographically dual to four-dimensional CFTs at finite temperature. We
study a family of four-derivative and six-derivative perturbative corrections
to these backgrounds. We identify the region in parameter space where the two
constraints are satisfied and in particular find that the inclusion of the
next-to-leading perturbative correction introduces wider possibilities for the
satisfaction of both constraints.Comment: 24 pages, 6 figures, v2: published version, refs added, minor
clarificatio
Moduli and electromagnetic black brane holography
We investigate the thermodynamic and hydrodynamic properties of 4-dimensional
gauge theories with finite electric charge density in the presence of a
constant magnetic field. Their gravity duals are planar magnetically and
electrically charged AdS black holes in theories that contain a gauge
Chern-Simons term. We present a careful analysis of the near horizon geometry
of these black branes at finite and zero temperature for the case of a scalar
field non-minimally coupled to the electromagnetic field. With the knowledge of
the near horizon data, we obtain analytic expressions for the shear viscosity
coefficient and entropy density, and also study the effect of a generic set of
four derivative interactions on their ratio. We also comment on the attractor
flows of the extremal solutions.Comment: 39 pages, no figures; v2: minor changes, refs. added; v3: typo fixed;
v4: a proof for decoupling of the viscosity mode added in appendix, matches
the published versio
Clinical trial of laronidase in Hurler syndrome after hematopoietic cell transplantation.
BackgroundMucopolysaccharidosis I (MPS IH) is a lysosomal storage disease treated with hematopoietic cell transplantation (HCT) because it stabilizes cognitive deterioration, but is insufficient to alleviate all somatic manifestations. Intravenous laronidase improves somatic burden in attenuated MPS I. It is unknown whether laronidase can improve somatic disease following HCT in MPS IH. The objective of this study was to evaluate the effects of laronidase on somatic outcomes of patients with MPS IH previously treated with HCT.MethodsThis 2-year open-label pilot study of laronidase included ten patients (age 5-13 years) who were at least 2 years post-HCT and donor engrafted. Outcomes were assessed semi-annually and compared to historic controls.ResultsThe two youngest participants had a statistically significant improvement in growth compared to controls. Development of persistent high-titer anti-drug antibodies (ADA) was associated with poorer 6-min walk test (6MWT) performance; when patients with high ADA titers were excluded, there was a significant improvement in the 6MWT in the remaining seven patients.ConclusionsLaronidase seemed to improve growth in participants <8 years old, and 6MWT performance in participants without ADA. Given the small number of patients treated in this pilot study, additional study is needed before definitive conclusions can be made
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
Comprehensive and quantitative mapping of energy landscapes for protein-protein interactions by rapid combinatorial scanning
Controlled coalescence-induced droplet jumping on flexible superhydrophobic substrates
Sessile droplets coalescing on superhydrophobic substrates spontaneously jump
from the surface. In this process, the excess surface energy available at the
initiation of coalescence overcomes the minimal surface adhesion and manifests
as sufficient kinetic energy to propel the droplets away from the substrate.
Here, we show that the coalescence induced droplet jumping velocity is
significantly curtailed if the superhydrophobic substrate is flexible in
nature. Through detailed experimental measurements and numerical simulations,
we demonstrate that the droplet jumping velocity and jumping height can be
reduced by as much as 40 % and 64%, respectively, by synergistically tuning the
substrate stiffness and substrate frequency. We show that this hitherto
unexplored aspect of droplet coalescence jumping can be gainfully exploited in
water harvesting from dew and fog harvesting. Additionally, through an exemplar
butterfly wing substrate, we demonstrate that this effect is likely to manifest
on many natural superhydrophobic substrates due to their inherent flexibility
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
