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A novel, quantitative saturation (QS) scanning strategy was
developed to obtain a comprehensive data base of the struc-
tural and functional effects of all possible mutations across a
large protein-protein interface. The QS scan approach was
applied to the high affinity site of human growth hormone
(hGH) for binding to its receptor (hGHR). Although the pub-
lished structure-function data base describing this system is
probably the most extensive for any large protein-protein
interface, it is nonetheless too sparse to accurately describe
the nature of the energetics governing the interaction. Our
comprehensive data base affords a complete view of the bind-
ing site and provides important new insights into the general
principles underlying protein-protein interactions. The hGH
binding interface is highly adaptable to mutations, but the
nature of the tolerated mutations challenges generally
accepted views about the evolutionary and biophysical pres-
sures governing protein-protein interactions. Many substitu-
tions that would be considered chemically conservative are
not tolerated, while conversely, many non-conservative sub-
stitutions can be accommodated. Furthermore, conservation
across species is a poor predictor of the chemical character of
tolerated substitutions across the interface. Numerous devi-
ations from generally accepted expectations indicate that
mutational tolerance is highly context dependent and, fur-
thermore, cannot be predicted by our current knowledge
base. The type of data produced by the comprehensive QS
scan can fill the gaps in the structure-function matrix. The
compilation of analogous data bases from studies of other
protein-protein interactions should greatly aid the develop-
ment of computational methods for explaining and designing
molecular recognition.

Protein-protein interactions are essential for most biological
processes, and they are often characterized by a striking struc-
tural plasticity that allows contact points to adapt to conforma-
tional changes and multiple amino acid substitutions (1–5). As
a result, the biophysics governing protein-protein interactions
is extremely complex, and an area of extensive investigation is
concerned with establishing a detailed knowledge base that will
enhance our understanding of protein-protein associations and
enable the development of predictive criteria for engineering
novel protein functions.
In this regard, the extensive structure-function data base

characterizing themechanism and energetics of the association
of human growth hormone (hGH)4 with its receptor (hGHR)
has provided fundamental insights into general features inher-
ent to protein-protein interactions (1–4, 6–17). The structure-
function data base for the hGH-hGHR interaction is probably
themost extensive available for any large protein-protein inter-
action, but nonetheless, it is not comprehensive, and attempts
to extract universal trends have been hindered by the incom-
pleteness of the data set.
What is needed to address these issues is a full sampling of all

the available structural and chemical diversity afforded by the
20 amino acids that can be genetically encoded at each position
in the binding interface. However, for a large protein interface,
a comprehensive approach leads to two serious practical
demands. It requires the production of hundreds of individual
variants by classical mutagenesis methods and the analysis of
each protein variant with biophysical techniques. To overcome
these technical barriers, we have developed a combinatorial
“quantitative saturation (QS) scanning” strategy that enables
rapid and facile assessment of the structural and functional
effects of all possible point mutations across a large protein-
protein interface. We applied the strategy to the interaction
between hGH and the hGHR, and we believe that the resulting
data base provides the most comprehensive picture of adapta-
bility in a large protein-protein interface that has ever been
achieved. Importantly, this comprehensive data base can be
collected and analyzed in a small lab setting using available
methods and reagents. In practice, QS scanning allows a single
scientist to accomplish more than has been possible for a large
group using classical mutagenesis methods.
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With this comprehensive data base in hand, we focused on
several universal features of protein-protein interactions that
are not satisfactorily addressed by classical methods. For
instance, which types of amino acids are the most versatile in
forming productive contacts in different packing environments
and also which types are the most specific? What is the relative
mutational tolerance of the hot spot residues compared with
that of bystander residues? Does sequence conservation among
species provide insights into the steric and chemical restric-
tions imposed on side chains at interfaces? Are there function-
ally homologous hydrophilic side chains, and if so, in which
circumstances can they be interchanged? The insights gained
from the QS scan data base greatly enhance our understanding
of adaptability in protein-protein interfaces, and the results
demonstrate that the QS scanning strategy is a powerful, gen-
eral method for exploring molecular recognition.

EXPERIMENTAL PROCEDURES

Library Construction andAnalysis—Wild-type hGHwas dis-
played on M13 bacteriophage as a fusion to the major coat
protein. Phage-displayed hGH libraries were constructed,
sorted, and analyzed, essentially as described in Ref. 18 and
references therein. A hGH-displaying phagemid vector con-
tainingTAAstop codons at all positions to bemutatedwas used
as the template for the Kunkelmutagenesismethod (19).Muta-
genic oligonucleotides were designed to replace the stop
codonswith degenerateNNK (N�A/C/G/T;K�G/C) codons
that collectively code for all 20 natural amino acid residues. Six
libraries were designed, with each combining four mutagenic
oligonucleotides to introduce the mutations into the hGH
sequence. The six mutagenesis reactions were electroporated
separately into Escherichia coli SS320 (18) and each yielded a
library of �2 � 1010 unique members. The libraries were han-
dled separately and each was independently sorted on two dif-
ferent immobilized targets: the extracellular domain (ECD) of
the hGHR (hGHR-ECD) or an anti-hGHmonoclonal antibody
(3F6.B1.4B1) (20). Individual clones from each round of selec-
tion were grown in a 96-well format, and the culture superna-
tants were used directly in phage enzyme-linked immunosor-
bent assays (18) to detect hormone-phage that bound to either
monoclonal antibody 3F6.B1.4B1 or the hGHR-ECD. After two
rounds of binding selections, an average of 180 enzyme-linked
immunosorbent assay-positive binding clones from each selec-
tion were sequenced and subjected to statistical analysis.
Statistical Analysis—The sequences from each selection

were aligned and the occurrence of each amino acid at each
position was tabulated (supplemental Tables S1 and S2). At
each position, the normalized frequency of each amino acid (p)
was calculated by correcting for bias in the NNK degenerate
codon (21). Shannon Entropy (H) is defined for protein sites by
the formula:H� �[sum]i � 1–20 pi ln pi, where pi is the fraction
of residues at the site that are of type i (22).
The transformed Shannon entropy (TH) was calculated as eH

(23). The specificity index (SI) for each position was calculated
as the difference between the TH values for the antibody bind-
ing and receptor binding selections.
Sequence conservation statisticswere derived using theCon-

Surf server.

Protein Purification and Affinity Analysis—Individual mutant
hGH genes were produced by the Kunkel mutagenesis method
(19). Mutant hGH proteins were expressed and purified as
described (8, 13). A truncated form of the hGHR-ECD (residues
29–238) with a S237C mutation was expressed and purified as
described (25).Thepurities of all protein samples exceeded95%as
judged by RP-HPLC and SDS-PAGE, and the identities of all
mutants were confirmed bymass spectrometry. Receptor binding
affinitiesweremeasured at 25 °Cby surfaceplasmon resonanceon
a Biacore 2000 instrument (Biacore Inc., Piscataway, NJ). The
hGHR-ECD was immobilized through the engineered cysteine
residue on a Pioneer C1 sensor chip at �50 response units, and
unreacted functional groups were blocked with glutathione, as
described (25). For kinetic analysis, 2-fold serial dilutions of hGH
variants inHBSbuffer (10mMHEPES, 150mMNaCl, 3mMEDTA,
0.005%Tween 20, pH7.4)were injected, and binding responses to
the hGHR-ECD were corrected by subtracting responses from
running buffer injections (no hGH injected) and by subtracting
responses on a blank flow cell (no hGHR-ECD immobilized). The
measurements were done in triplicate. For kinetic analysis, a 1:1
Langmuirmodelwith separate fitting of kon and koff was used. The
Kd value was estimated from the ratios of kon and koff.

RESULTS

Principles of QS Scanning—Weaimed to develop a saturation
scanning strategy that would provide quantitative information
about the structural and functional effects of all possible amino
acid substitutions within a protein binding site. For the high
affinity receptor-binding site of hGH (site 1), this involves 35
residues (11). Thus, the site was broken down into six libraries
covering five or six residues each (Fig. 1), which could be com-
pletely represented by the diversities obtainable by phage dis-
play (1010). So as tominimize potential cooperative interactions
betweenmutations, themembers within each library were cho-

FIGURE 1. QS scan library design. The hGH site 1 for binding to the hGHR
contains 35 residues distributed across four regions: helices 1 and 4 of the
four-helix bundle (residues 14 –29 and 164 –183) and two connecting loops
(residues 41– 48 and 60 – 67). Six libraries were designed to group together
five or six residues each in a manner that maximized the distances between
residues in any one library (the closest C�-C� approach was 7.6 Å between
Phe44 and Pro48). The hGH structure is shown as a schematic with the main
chain depicted as a ribbon and scanned residues depicted as spheres. Each
library contained only one of the six energetically most important residues
(Pro61, Arg64, Lys172, Thr175, Phe176, or Arg178) and residues are color-coded
according to the library they share. Structures were derived from the coordi-
nates of the 2:1 hGHR-hGH complex (11) and were rendered in Ribbons (24).
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sen to be as far apart as possible in the three-dimensional struc-
ture. In addition, each library contained only one of the six
energetically most important residues, as determined by ala-
nine scanning (13, 14). With these principles, we ensured that
the interface was comprehensively scanned and also that the
libraries were designed to minimize the likelihood of interac-
tions that would be very different from the wild-type (wt)
mechanism of binding.

Structural Constraints on Sequence
Space—To determine the constraints
on sequence space imposed by the
structural requirements of the hGH
four-helix bundle fold, we selected
each library forbinding toa structure-
specific antibody that recognizes an
epitope on the side of hGH opposite
to site 1 (20). Variants from each
library selection were sequenced, and
the aminoacid frequencydistribution
at each randomized position was
determined (Fig. 2). The data were
used to compute the transformed
Shannon entropy (TH) value at each
position, which measures the degree
of randomness within a population
and has been used to quantify diver-
sity within antibodies, T-cell recep-
tors, and other proteins (23, 26–28).
For a frequency distribution of 20
amino acids, the TH varies between
values of 1 and 20 for positions that
are completely conserved or com-
pletely random, respectively. Follow-
ing selection for the native fold, the
average TH value for the 35 positions
is quite high (14 � 2). This indicates
that the hGH fold is highly tolerant to
mutations at these solvent-exposed
positions, and the low standard devi-
ationsuggests that there is littlediffer-
ence between the mutational toler-
ance of the individual positions.
The deviation from complete

randomness can be explained by
three major biases. First, cysteine is
scarce at almost all positions, and
second, proline is scarce within the
�-helical regions. Both of these
findings are in accord with general
views of protein stability, as cys-
teines are likely to interfere with the
native disulfides of hGH and pro-
lines are known to destabilize alpha-
helices. A third bias is an overabun-
dance of hydrophobic residues at
the expense of hydrophilic residues.
This finding is unexpected, as it
contradicts popular views about

protein folding and stability, which hold that solvent-exposed
hydrophobes should be disfavored (29).
Overall, the distributions are not biased in favor of the wild-

type, which shows average abundance at 19 positions and above
or below average abundance at 7 or 9 positions, respectively.
Functional Constraints on Sequence Space—We next deter-

mined the constraints on sequence space imposed by selection
for the binding of hGH to the hGHR. This selection combines

FIGURE 2. The QS scan data base. At each position (WT), following selection for binding to the hGHR (top row)
or an anti-hGH antibody (bottom row), the percent occurrence of each amino acid type was calculated after
normalization for codon bias. The wt occurrences are boxed and values are colored as follows: yellow, �10%;
blue, �2%. The consensus lists the amino acids over-represented (�10%) in the receptor binding selection
data set. TH diversity (TH) and SI values were calculated as described under “Materials and Methods.”
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two types of constraints: a structural constraint for a stable
native fold and a functional constraint for a binding site capable
of receptor recognition. As the structural constraints had been
independently assessed from the antibody binding selection
(see above), we could quantify the additional constraints
imposed by function with the “SI,” a metric that we defined as
the difference between the TH values for the antibody binding
and receptor binding selections (Fig. 2). As expected, a positive
mean SI value (3 � 4) across the 35 scanned positions indicates
that receptor binding function imposes additional constraints
above and beyond those imposed by structural demands, and
the large standard deviation indicates that these functional con-
straints are position-specific. Interestingly, the correlation
betweenTH values and sequence conservation across species is
not strong. For instance, Lys168, which is highly conserved
across species has the largest value (TH � 17), indicating that
most amino acid types can substitute equally well for lysine
without affecting the overall binding.
Kinetic Measurements Validate the Accuracy of QS Scan-

ning—We tested the accuracy with which the QS scanning
strategy predicts the functional effects of single amino acid sub-
stitutions. The statistical analysis suggested that the wild-type
residue is suboptimal for receptor binding at a number of posi-
tions and that affinity could be improved with one or several
types of amino acid substitutions. We purified six hGH protein
variants, each of which contained a single point mutation pre-
dicted to improve affinity. The kinetics of wild-type hGH and
each of the mutants for binding to the hGHR were determined
by surface plasmon resonance (Table 1). The results unequivo-
cally demonstrate that the QS scan data are highly reliable, as
the affinity of each mutant was improved over that of wt hGH
and, for five of the six mutants, the measured improvements
were virtually identical with the predictions. In addition, theQS
scan is highly sensitive, as even effects as small as 2-fold were
predicted accurately.
We also constructed two triple mutants in which the

mutated sites were buffered by at least two intervening residues
in the three-dimensional structure. The affinities of these
mutants were improved �30-fold relative to that of wt hGH
(Table 1). Although the effects of the mutations did not com-
bine in a completely additive manner, the affinities of the triple
mutants exceeded those of the singlemutants. Interestingly, the
addition of a fourth mutation (D171S) did not improve affinity

further suggesting that additivity principles begin to deteriorate
when too many mutations are incorporated in a proximal area.

DISCUSSION

There exists an extensive literature describing structure-
function relationships for a large number of protein-protein
interactions. In particular, the use of alanine scanning has been
extremely powerful for determining the binding contributions
of individual residues (3, 6, 8, 9, 13, 14, 17, 25, 30–38). The
compilation of these data has resulted in the paradigm that
binding energy is generally focused in a limited region of the
interface, termed the “hot spot” of binding energy. However,
while alanine scanning provides information about which resi-
dues are important, it does not provide insights into the func-
tional consequences of substitution by the full spectrum of
chemical and conformational diversity within the 20 natural
amino acids. This question is fundamental to appreciating the
possible basis for evolutionary conservation among binding
site residues, as well as for understanding the underlying bio-
physical parameters governing the overall energetics of the
interaction.
While the isolated chemical properties of each of the 20

amino acids can be described by well established physicochem-
ical criteria, it is understood that these properties are highly
context dependent and will certainly be influenced by the local
dielectric and packing environments within protein interfaces.
This context dependence greatly limits the ability to predict
how a particular substitutionwill affect binding, even in cases of
supposedly conservative changes. Unfortunately, the current
mutagenesis data bases provide a very sparse matrix of struc-
ture-function effects, which is inadequate for even a qualitative
description of the binding energy landscape.
In the case of hGH site 1, which encompasses 35 positions,

the compilation of a comprehensive functional matrix by con-
ventional methods is a Herculean task involving the construc-
tion and analysis of close to 700 individual protein variants. To
overcome the technical barriers inherent to such an exhaustive
analysis, we developed a novel saturation mutagenesis strategy
that is rapid yet quantitative. The QS scanningmethod builds a
complete mutagenesis data base through a simple process that
is not time consuming and uses standard molecular biology
techniques. The importance of completeness cannot be over
emphasized, as this data set allows for not only the identifica-

TABLE 1
Kinetic analysis of hGH mutants binding to the hGHR

hGHmutant kon � 105 koff � 10�4 Kd

Kd,wt/Kd,mut
a

Calculated Predicted
M�1 s�1 s�1 nM

wt 2.34 � 0.07 3.64 � 0.08 1.56 � 0.08 1
R167N 2.78 � 0.16 0.32 � 0.11 0.12 � 0.05 13 15
D171S 2.52 � 0.17 1.57 � 0.03 0.63 � 0.06 2.5 2
E174G 2.73 � 0.09 2.75 � 0.03 1.01 � 0.04 1.5 6
E174A 3.57 � 0.11 1.24 � 0.11 0.35 � 0.03 4.5 4
E174S 2.82 � 0.12 1.07 � 0.08 0.38 � 0.04 4.2 4
I179V 1.83 � 0.09 1.14 � 0.10 0.62 � 0.03 2.5 3
R167N/E174G/I179V 1.97 � 0.15 0.12 � 0.05 0.06 � 0.02 27
R167N/E174A/I179V 2.61 � 0.11 0.12 � 0.01 0.05 � 0.01 34
R167N/D171S/E174G/I179V 2.38 � 0.16 0.15 � 0.06 0.06 � 0.03 24

a Surface plasmon resonance was used to determine kon and koff values. TheKd values were calculated as koff /kon and were used to derive the calculatedKd,wt/Kd,mut values. The
predictedKd,wt/Kd,mut values were derived from theQS scan data, as described for shotgun alanine-scanning (6), from the observed frequencies of thewt (pwt) ormutant (pmut)
after selection for binding to the hGHR or the anti-hGH antibody (Fig. 2), as follows: Kd,wt/Kd,mut � (pmut,hGHR/pwt,hGHR)(pwt,antibody/pmut,antibody).
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tion of many overall trends but also reveals subtle effects that
have beenmissed by classical approaches. Importantly, analysis
of trendswithin the data suggest that it is not feasible to identify
a smaller “representative” subset of chemically and structurally
diverse amino acid types that by themselves could adequately
describe the overall character of the binding surface. In other
words, shortcuts are not possible.
Substitution of Hydrophilic Residues—The site 1 surface of

hGH is solvent exposed and approximately two-thirds of the
side chains are hydrophilic. Surprisingly, the data indicate that
hydrophobic groups are preferred at almost every position,
including positions occupied by wt hydrophilic side chains
involved in hydrogen bonding. Of the nine hydrophilic posi-
tions that are evolutionarily conserved across species, most can
be substituted by hydrophobic side chains. Conversely, there
are no hydrophilic side chains that productively substitute for
hydrophobes, even at positions where such side chains are
observed in the sequences of related species. Overall, hydro-
philic groups can generally be replaced by small hydrophobic
groups but are resistant to replacement by larger ones.
Conservative Substitutions Do Not Exist—The data suggest

that the accepted definitions of homologous pairs and clusters
for hydrophilic side chains (e.g. Asn substituted by Gln or Asp)
are not operable in this protein-protein interface. Likewise,
there is no systematic connection between physicochemically
related hydrophobic pairs (e.g. Val/Ile or Ile/Leu), although
interchangeability among hydrophobic groups is better accom-
modated. A point of clarification should be made about the
apparent bias toward hydrophobic substitutions in the partic-
ular case of hGH. In a number of instances, hydrophilic groups
(even some that are involved in hydrogen bonding) interact
with the receptor through the hydrophobic portions of their
side chains. Thus, it appears that hydrophobic substitutions
tend to accentuate the role of the van derWaals contacts with-
out apparently paying a large penalty for the loss of hydrogen
bonds.
The SI—The SI value provides an unbiased assessment of the

number of residue types that could functionally contribute to
binding at each position in the interface, and thus, it is a pow-
erful metric to gauge not only the specificity requirements but
also the plasticity of the interface. The SI identifies positions
where only a single residue type is acceptable, as in the case of
Pro61 where there are specific conformational requirements
and also positions where specificity has more to do with size
rather than chemical character (e.g. Thr67 and Thr175). In the
case of position 183, Arg and Lys are highly preferred but Ala
and Gly are the next best substitutions, suggesting that this
position has an “all or nothing” character. In contrast, Arg is
highly preferred at position 178, but Lys is strongly selected
against. This is an interesting finding, since a Lys residue is
found at this position in growth hormones from a number of
mammalian species, and this is one of several positions that
influence the cross species specificity characteristics of these
hormones.
In general, the hot spot residues defined by alanine scanning

have the highest SI values. This indicates that these positions
require the highest degree of specificity, and furthermore, the
wild-type residue type is usually preferred. Large negative SI

values are rare and indicate positions where there is strong
expression bias for residue types that are poor for binding. This
situation occurs at position 174 where there is a strong expres-
sion bias for Trp or Phe, which perhaps increases protein sta-
bility, but these side chains are too bulky to fit in the interface
without large disruptions in the structure.
The SI is an extremely robust probe of the energy surface, and

it is significantly more powerful than alanine scanning for
assessing the functional adaptability of the binding site. Fig. 3
compares the functional epitope derived by alanine scanning to
that based on the SI values. While there is general correspond-
ence, as the high SI values superimpose on the alanine scanning
hot spot residues, the epitope defined by SI values is somewhat
more expansive. This is because, at several “high specificity”
positions, the preferred residue type is not the wt amino acid, a
characteristic evident at position 167 where Asn and Gln are
highly preferred over the wt Arg.
Characteristics of the Binding Energy Surface—Analysis of a

complete QS scan data base demonstrates just how rough the
binding energy surface is, and it reveals the inadequacies of
sparse structure-function data bases for predicting the func-

FIGURE 3. Comparison of alanine scanning and QS scanning. The hGH
structure is shown as a schematic with the main chain depicted as a ribbon
and scanned residues depicted as spheres. A, the results of alanine scanning
mapped onto hGH site 1 (12, 18). The residues are colored according to the
��GAla-wt values (in kcal/mol), as follows: cyan � �0.4; �0.4 � green � 0.4;
0.4 � yellow � 1.0; red � 1.0; gray, unscanned. B, the results of QS scanning
mapped onto hGH site 1. The residues are colored according to the SI values,
as follows: cyan � �2; �2 � green � 3; 3 � yellow � 6; red � 6. Structures
were derived from the coordinates of the 2:1 hGHR-hGH complex (11) and
were rendered in Ribbons (24).
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tional effects of small differences between homologous side
chain types. At one end of the spectrum, there are a substantial
number of positions that can tolerate many amino acid types,
while at the other end there are positions that display signifi-
cant specificity requirements. It is at these positions of broad
and narrow specificity where the character of the energy sur-
face is fairly well defined, at least in a qualitative sense.
Between these two extremes are areas where the energetics

are very sensitive to small perturbations that are not easily
explained by relationships between side chain characteristics
and structural environment. For example, the wt Ile is close to
optimal at position 179, but Val is even better. In fact, among
the growth hormones of different species, Val is found in the
majority of cases. Surprisingly, the close homologue Leu is a
poor substitute, whereas Gln is almost as good as Ile, but Asn is
not tolerated at all. Taken together, these data suggest that two
distinct packing scenarios can exist in this region of the inter-
face. In the first, the volume of the hydrophobic hole occupied
by the residue at position 179 is just large enough to accommo-
date an Ile group, but the structure can relax in an energetically

positive way to accommodate a Val
side chain. Ala is too small and Leu
is too big, and each pays a van der
Waals penalty. The hydrophilic Gln
side chain clearly cannot pack into
the hydrophobic hole, but it can be
modeled to form a good hydrogen-
bonding interactionwithGln68 (Fig.
4). The side chain of Gln68 forms a
hydrogen bondwithArg64 and plays
an important role in stabilizing the
so-called 60’s loop in a conforma-
tion suitable for binding to the
hGHR. Presumably, the interaction
mediated by Gln179 further stabi-
lizes this loop. The Asn side chain is
likely too short to do this, and con-
sequently, it is not tolerated.
There are numerous examples of

other seemingly subtle changes that
affect significant changes in func-
tion. In particular, as predicted from
the QS scan, the mutation R167N
results in a dramatic increase in
affinity. Interestingly, the R167N
mutation is also found in a phage-
derived hGH variant (hGHv) that
contains a total of 15 mutations and
binds to the hGHR �400-fold
tighter than wt hGH (10). It had
been observed previously that
Arg167 inwt hGHplays an unusually
small role in binding, considering
that it forms a salt bridge with
Glu127 of the hGHR (12). The crystal
structure of hGHv in complex with
the hGHR reveals that the substitu-
tion of Arg167 by Asn eliminates the

salt bridge with Glu127, but the Asn side chain does not make
new contacts with the receptor (7). These observations suggest
that Arg167 has a null effect on receptor binding and that Asn167
provides some positive influence in an apparently indirect way.
It is alsoworth noting that hGHbinds to not only the hGHRbut
also to the prolactin receptor (hPRLR); in contrast to the inter-
action with the hGHR, the interaction with the hPRLR is criti-
cally dependent on Arg167, as substitution by Ala reduces bind-
ing affinity by �700-fold (12).
In the QS scan data set, position 171 is biased in favor of Ser

over the wt Asp. The D171S mutation is also found in the high
affinity hGHv (10), where the Ser171 side chain forms a hydro-
gen bond with the Trp104 side chain of the hGHR (7). It is
noteworthy that, in most species, position 171 is occupied by
His, a residue that is not significantly represented in the QS
scan. This apparent discrepancy can be explained on evolution-
ary grounds, since it has been determined that position 171 was
a site for coevolution between growth hormones and their
receptors during the transition between old world and new
world monkeys (1). In lower species, there is a pairing of His at

FIGURE 4. Modeled hydrogen-bonding interactions between the side chain of Gln179 and Gln68 and
Arg183 of hGH and Lys167 of the hGHR (labeled as K167r). The side chain of Gln179 is modeled in a low energy
conformation and is also positioned to form a hydrogen bond to its own main chain carbonyl group. The side
chain of the wt Ile179 is shown in white. The hydrogen-bonding network involving the side chains of Arg64,
Gln68, and Arg183 is important in stabilizing the 60’s loop, which plays a role in the binding of hGH site 1 to the
hGHR. Hydrogen bonds are shown as dashed lines with the interatomic distances shown in angstroms. Hydro-
gen bonds involving Gln179 are colored red, and others are colored black. The model was built using the
coordinates of a 2:1 hGHR-hGH complex (Protein Data Bank entry 3HHR).
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position 171 in the hormones and a Leu at position 43 in the
receptors. In primates, however, position 171 is occupied by an
Asp that forms a salt bridge with an Arg at position 43 of the
cognate receptors (11). Interestingly, primate growth hor-
mones can bind receptors containing a Leu at position 43, but
the growth hormones of lower species containingHis171 cannot
bind primate receptors containing Arg43. Thus, it has been
speculated that coevolution occurred first by mutation of posi-
tion 171 in the hormone (H171D) followed bymutation of posi-
tion 43 in the receptor (L43R) (1).
The picture that is developed from theQS scan data is that of

an energy landscape composed of three distinctly different
regions. The first is the high specificity region that correlates
reasonablywell with the binding hot spot paradigmbut is better
described by the SI epitope. The second is the low specificity
region where many residue types can be inserted without large
deleterious effects. The third consists of positions that are sen-
sitive to subtle changes and are not optimized for binding func-
tion. It is within this last region that the detailed nature of the
binding energy surface is poorly characterized and not well
understood.
We believe that the type of quantitative data produced from

the comprehensive QS scan begins to fill the gaps in the struc-
ture-function matrix. While this represents a significant
advance, many similar studies will be required to statistically
average relationships between side chain character and struc-
tural context. The next major challenge will be to synthesize
these types of data into a computational framework that can
predict the important subtleties that are inherent properties in
molecular recognition.

CONCLUSIONS

Among the systems that have been extensively studied by
mutagenesis and structural approaches, hGH has proven to be
an extremely robust model for identifying structure-function
relationships involved in the formation and maintenance of
protein-protein interactions. Therefore, we believe that the
trends seen in this study are likely to be applicable to protein-
protein interfaces in general. Below, we summarize the conclu-
sions derived from this study.
Even though the interaction between hGH and the hGHR is

arguably the most exhaustively studied protein-protein inter-
action, the previously existing mutational data set represents
too sparse a sampling of structure-function space to have gen-
eral predictive power.
The QS scan reveals that the hGH binding interface is

extremely tolerant to mutations. In many cases, even substitu-
tions expected to introduce steric and chemical features incom-
patible with the wild-type residue are tolerated, and these out-
liers provide critical data points for characterizing the binding
energy surface.
The SI metric identifies functionally sensitive residues with

higher resolution than alanine scanning. The QS scan matrix
assesses the effect of every amino acid type at every position
within a binding site in a quantitativemanner, and it can predict
2-fold effects without requiring structural knowledge.
There are a number of examples where the wild-type residue

leads to poor protein expression and cases where mutations

that greatly increase expression reduce function, implying that
expression levels and function are often uncoupled.
Hydrophobic effects dominate the function of hGH site 1,

and consequently, the hGH-hGHR interaction can be main-
tained under mutational pressure, because hydrophobic resi-
dues are more interchangeable than hydrophilic residues.
The QS scan matrix challenges generally accepted views of

conservative mutations in molecular recognition, especially
whether they exist at all in the case of hydrophilic side chains.
For hydrophilic groups, there are no trends among the acid and
amide side chains and only weak trends betweenArg and Lys or
Ser and Thr. Surprisingly, there are only weak functional con-
nections between Tyr and Phe, and Val, Ile, and Leu show only
limited homology in functional space.
An important observation is that sequence conservation

across species is a poor predictor of the chemical character of
tolerated substitutions in a protein-protein interface. The con-
cept that evolution is a dynamic process that is ever fine-tuning
an interaction is probably incorrect. Conservation across spe-
cies does not necessarily mean that a particular residue is
important for structure or function but rathermay reflect other
constraints imposed by the requirements of the complex bio-
logical system.
The implications of this last point, when viewed in the con-

text of the other conclusions, is that the design of a functional
hGHmolecule based strictly on biophysical principleswould be
very different from that of the natural hGH based on evolution-
ary pressures.
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