Controlled coalescence-induced droplet jumping on flexible superhydrophobic substrates

Abstract

Sessile droplets coalescing on superhydrophobic substrates spontaneously jump from the surface. In this process, the excess surface energy available at the initiation of coalescence overcomes the minimal surface adhesion and manifests as sufficient kinetic energy to propel the droplets away from the substrate. Here, we show that the coalescence induced droplet jumping velocity is significantly curtailed if the superhydrophobic substrate is flexible in nature. Through detailed experimental measurements and numerical simulations, we demonstrate that the droplet jumping velocity and jumping height can be reduced by as much as 40 % and 64%, respectively, by synergistically tuning the substrate stiffness and substrate frequency. We show that this hitherto unexplored aspect of droplet coalescence jumping can be gainfully exploited in water harvesting from dew and fog harvesting. Additionally, through an exemplar butterfly wing substrate, we demonstrate that this effect is likely to manifest on many natural superhydrophobic substrates due to their inherent flexibility

    Similar works

    Full text

    thumbnail-image

    Available Versions