143 research outputs found

    The forecasting of dynamical Ross River virus outbreaks: Victoria, Australia

    Get PDF
    Ross River virus (RRV) is Australia’s most epidemiologically important mosquito-borne disease.During RRV epidemics in the State of Victoria (such as 2010/11 and 2016/17) notifications canaccount for up to 30% of national RRV notifications. However, little is known about factors which canforecast RRV transmission in Victoria. We aimed to understand factors associated with RRVtransmission in epidemiologically important regions of Victoria and establish an early warningforecast system. We developed negative binomial regression models to forecast human RRVnotifications across 11 Local Government Areas (LGAs) using climatic, environmental, andoceanographic variables. Data were collected from July 2008 to June 2018. Data from July 2008 toJune 2012 were used as a training data set, while July 2012 to June 2018 were used as a testing dataset. Evapotranspiration and precipitation were found to be common factors for forecasting RRVnotifications across sites. Several site-specific factors were also important in forecasting RRVnotifications which varied between LGA. From the 11 LGAs examined, nine experienced an outbreakin 2011/12 of which the models for these sites were a good fit. All 11 LGAs experienced an outbreakin 2016/17, however only six LGAs could predict the outbreak using the same model. We documentsimilarities and differences in factors useful for forecasting RRV notifications across Victoria anddemonstrate that readily available and inexpensive climate and environmental data can be used to predict epidemic periods in some areas. Furthermore, we highlight in certain regions the complexityof RRV transmission where additional epidemiological information is needed to accurately predictRRV activity. Our findings have been applied to produce a Ross River virus Outbreak SurveillanceSystem (ROSS) to aid in public health decision making in Victoria

    Anti-malarial landscape in Myanmar: results from a nationally representative survey among community health workers and the private sector outlets in 2015/2016

    Get PDF
    Abstract Background In 2015/2016, an ACTwatch outlet survey was implemented to assess the anti-malarial and malaria testing landscape in Myanmar across four domains (Eastern, Central, Coastal, Western regions). Indicators provide an important benchmark to guide Myanmar’s new National Strategic Plan to eliminate malaria by 2030. Methods This was a cross-sectional survey, which employed stratified cluster-random sampling across four regions in Myanmar. A census of community health workers (CHWs) and private outlets with potential to distribute malaria testing and/or treatment was conducted. An audit was completed for all anti-malarials, malaria rapid diagnostic tests. Results A total of 28,664 outlets were approached and 4416 met the screening criteria. The anti-malarial market composition comprised CHWs (41.5%), general retailers (27.9%), itinerant drug vendors (11.8%), pharmacies (10.9%), and private for-profit facilities (7.9%). Availability of different anti-malarials and diagnostic testing among anti-malarial-stocking CHWs was as follows: artemisinin-based combination therapy (ACT) (81.3%), chloroquine (67.0%), confirmatory malaria test (77.7%). Less than half of the anti-malarial-stocking private sector had first-line treatment in stock: ACT (41.7%) chloroquine (41.8%), and malaria diagnostic testing was rare (15.4%). Oral artemisinin monotherapy (AMT) was available in 27.7% of private sector outlets (Western, 54.1%; Central, 31.4%; Eastern; 25.0%, Coastal; 15.4%). The private-sector anti-malarial market share comprised ACT (44.0%), chloroquine (26.6%), and oral AMT (19.6%). Among CHW the market share was ACT (71.6%), chloroquine (22.3%); oral AMT (3.8%). More than half of CHWs could correctly state the national first-line treatment for uncomplicated falciparum and vivax malaria (59.2 and 56.9%, respectively) compared to the private sector (15.8 and 13.2%, respectively). Indicators on support and engagement were as follows for CHWs: reportedly received training on malaria diagnosis (60.7%) or national malaria treatment guidelines (59.6%), received a supervisory or regulatory visit within 12 months (39.1%), kept records on number of patients tested or treated for malaria (77.3%). These indicators were less than 20% across the private sector. Conclusion CHWs have a strong foundation for achieving malaria goals and their scale-up is merited, however gaps in malaria commodities and supplies must be addressed. Intensified private sector strategies are urgently needed and must be scaled up to improve access and coverage of first-line treatments and malaria diagnosis, and remove oral AMT from the market place. Future policies and interventions on malaria control and elimination in Myanmar should take these findings into consideration across all phases of implementation

    Long-term outcomes after acute primary angle closure in a White Caucasian population

    Get PDF
    IntroductionVery limited data is available on the morbidity and progression to primary angle closure glaucoma (PACG) in White Caucasian individuals following acute primary angle closure (APAC).Our aim is to identify the number of eyes who developed PACG following an APAC attack and to determine the risk factors for PACG development in a White Caucasian population in the United Kingdom (UK). We assessed the rate of blindness and visual impairment in the affected eye as defined by the World Health Organisation.MethodsRetrospective observational study including 48 consecutive eyes of 46 White Caucasian subjects who presented with APAC to a tertiary referral unit in the United Kingdom.Eyes affected by glaucomatous optic neuropathy at presentation were excluded. We included in our analysis socio-demographic variables, ophthalmic findings, investigations and treatment.ResultsThe mean final follow up period was 27 months ± 14 standard deviation (SD). Seven (15 %) eyes developed PACG. Statistical analysis showed that the following factors were linked to a higher risk of progression: length of symptoms before presentation and time taken to break the attack. The intraocular pressure (IOP) was significantly higher in the group who developed PACG at the one- and six-month visit compared to the group which did not develop the disease.At the final visit 3 (6 %) eyes were blind while 5 (10 %) were visually impaired. PACG was responsible for visual impairment in 2 (4 %) eyes but not for any case of blindness.ConclusionsDelayed presentation, length of time taken to break the attack and poor IOP control can result in PACG development and visual impairment. APAC causes a low long-term visual morbidity in White Caucasians

    Bacteria establish an aqueous living space in plants crucial for virulence

    Get PDF
    High humidity has a strong influence on the development of numerous diseases affecting the above-ground parts of plants (the phyllosphere) in crop fields and natural ecosystems, but the molecular basis of this humidity effect is not understood. Previous studies have emphasized immune suppression as a key step in bacterial pathogenesis. Here we show that humidity-dependent, pathogen-driven establishment of an aqueous intercellular space (apoplast) is another important step in bacterial infection of the phyllosphere. Bacterial effectors, such as Pseudomonas syringae HopM1, induce establishment of the aqueous apoplast and are sufficient to transform non-pathogenic P. syringae strains into virulent pathogens in immunodeficient Arabidopsis thaliana under high humidity. Arabidopsis quadruple mutants simultaneously defective in a host target (AtMIN7) of HopM1 and in pattern-triggered immunity could not only be used to reconstitute the basic features of bacterial infection, but also exhibited humidity-dependent dyshomeostasis of the endophytic commensal bacterial community in the phyllosphere. These results highlight a new conceptual framework for understanding diverse phyllosphere–bacterial interactions

    The Brain Effects of Laser Acupuncture in Healthy Individuals: An fMRI Investigation

    Get PDF
    Background: As laser acupuncture is being increasingly used to treat mental disorders, we sought to determine whether it has a biologically plausible effect by using functional magnetic resonance imaging (fMRI) to investigate the cerebral activation patterns from laser stimulation of relevant acupoints. Methodology/Principal Findings: Ten healthy subjects were randomly stimulated with a fibreoptic infrared laser on 4 acupoints (LR14, CV14, LR8 and HT7) used for depression following the principles of Traditional Chinese Medicine (TCM), and 1 control non-acupoint (sham point) in a blocked design (alternating verum laser and placebo laser/rest blocks), while the blood oxygenation level-dependent (BOLD) fMRI response was recorded from the whole brain on a 3T scanner. Many of the acupoint laser stimulation conditions resulted in different patterns of neural activity. Regions with significantly increased activation included the limbic cortex (cingulate) and the frontal lobe (middle and superior frontal gyrus). Laser acupuncture tended to be associated with ipsilateral brain activation and contralateral deactivation that therefore cannot be simply attributed to somatosensory stimulation. Conclusions/Significance: We found that laser stimulation of acupoints lead to activation of frontal-limbic-striatal brain regions, with the pattern of neural activity somewhat different for each acupuncture point. This is the first study to investigate laser acupuncture on a group of acupoints useful in the management of depression. Differing activity patterns depending on the acupoint site were demonstrated, suggesting that neurological effects vary with the site of stimulation. The mechanisms of activation and deactivation and their effects on depression warrant further investigation.5 page(s

    The level of claudin-7 is reduced as an early event in colorectal carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compromised epithelial barriers are found in dysplastic tissue of the gastrointestinal tract. Claudins are transmembrane proteins important for tight junctions. Claudins regulate the paracellular transport and are crucial for maintaining a functional epithelial barrier. Down-regulation of the oncogenic serine protease, matriptase, induces leakiness in epithelial barriers both <it>in vivo </it>and <it>in vitro</it>. We found in an <it>in-silico </it>search tight co-regulation between <it>matriptase </it>and <it>claudin-7 </it>expression. We have previously shown that the <it>matriptase </it>expression level decreases during colorectal carcinogenesis. In the present study we investigated whether <it>claudin-7 </it>expression is likewise decreased during colorectal carcinogenesis, thereby causing or contributing to the compromised epithelial leakiness of dysplastic tissue.</p> <p>Methods</p> <p>The mRNA level of <it>claudin-7 </it>(CLDN7) was determined in samples from 18 healthy individuals, 100 individuals with dysplasia and 121 colorectal cancer patients using quantitative real time RT-PCR. In addition, immunohistochemical stainings were performed on colorectal adenomas and carcinomas, to confirm the mRNA findings.</p> <p>Results</p> <p>A 2.7-fold reduction in the <it>claudin-7 </it>mRNA level was found when comparing the biopsies from healthy individuals with the biopsies of carcinomas (p < 0.001). Reductions in the <it>claudin-7 </it>mRNA levels were also detected in mild/moderate dysplasia (p < 0.001), severe dysplasia (p < 0.01) and carcinomas (p < 0.01), compared to a control sample from the same individual. The decrease at mRNA level was confirmed at the protein level by immunohistochemical stainings.</p> <p>Conclusions</p> <p>Our results show that the <it>claudin-7 </it>mRNA level is decreased already as an early event in colorectal carcinogenesis, probably contributing to the compromised epithelial barrier in adenomas.</p

    PTRF/Cavin-1 and MIF Proteins Are Identified as Non-Small Cell Lung Cancer Biomarkers by Label-Free Proteomics

    Get PDF
    With the completion of the human genome sequence, biomedical sciences have entered in the “omics” era, mainly due to high-throughput genomics techniques and the recent application of mass spectrometry to proteomics analyses. However, there is still a time lag between these technological advances and their application in the clinical setting. Our work is designed to build bridges between high-performance proteomics and clinical routine. Protein extracts were obtained from fresh frozen normal lung and non-small cell lung cancer samples. We applied a phosphopeptide enrichment followed by LC-MS/MS. Subsequent label-free quantification and bioinformatics analyses were performed. We assessed protein patterns on these samples, showing dozens of differential markers between normal and tumor tissue. Gene ontology and interactome analyses identified signaling pathways altered on tumor tissue. We have identified two proteins, PTRF/cavin-1 and MIF, which are differentially expressed between normal lung and non-small cell lung cancer. These potential biomarkers were validated using western blot and immunohistochemistry. The application of discovery-based proteomics analyses in clinical samples allowed us to identify new potential biomarkers and therapeutic targets in non-small cell lung cancer

    A population-specific material model for sagittal craniosynostosis to predict surgical shape outcomes

    Get PDF
    Sagittal craniosynostosis consists of premature fusion (ossification) of the sagittal suture during infancy, resulting in head deformity and brain growth restriction. Spring-assisted cranioplasty (SAC) entails skull incisions to free the fused suture and insertion of two springs (metallic distractors) to promote cranial reshaping. Although safe and effective, SAC outcomes remain uncertain. We aimed hereby to obtain and validate a skull material model for SAC outcome prediction. Computed tomography data relative to 18 patients were processed to simulate surgical cuts and spring location. A rescaling model for age matching was created using retrospective data and validated. Design of experiments was used to assess the effect of different material property parameters on the model output. Subsequent material optimization—using retrospective clinical spring measurements—was performed for nine patients. A population-derived material model was obtained and applied to the whole population. Results showed that bone Young’s modulus and relaxation modulus had the largest effect on the model predictions: the use of the population-derived material model had a negligible effect on improving the prediction of on-table opening while significantly improved the prediction of spring kinematics at follow-up. The model was validated using on-table 3D scans for nine patients: the predicted head shape approximated within 2 mm the 3D scan model in 80% of the surface points, in 8 out of 9 patients. The accuracy and reliability of the developed computational model of SAC were increased using population data: this tool is now ready for prospective clinical application
    corecore