85 research outputs found

    A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    Get PDF
    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yields under rain-fed conditions are often variable. There is therefore a need to identify factors that influence crop yield under conservation agriculture and rain-fed conditions. Here, we studied maize grain yield data from experiments lasting 5 years and more under rain-fed conditions. We assessed the effect of long-term tillage and residue retention on maize grain yield under contrasting soil textures, nitrogen input and climate. Yield variability was measured by stability analysis. Our results show an increase in maize yield over time with conservation agriculture practices that include rotation and high input use in low rainfall areas. But we observed no difference in system stability under those conditions. We observed a strong relationship between maize grain yield and annual rainfall. Our meta-analysis gave the following findings: (1) 92% of the data show that mulch cover in high rainfall areas leads to lower yields due to waterlogging; (2) 85% of data show that soil texture is important in the temporal development of conservation agriculture effects, improved yields are likely on well-drained soils; (3) 73% of the data show that conservation agriculture practices require high inputs especially N for improved yield; (4) 63% of data show that increased yields are obtained with rotation but calculations often do not include the variations in rainfall within and between seasons; (5) 56% of the data show that reduced tillage with no mulch cover leads to lower yields in semi-arid areas; and (6) when adequate fertiliser is available, rainfall is the most important determinant of yield in southern Africa. It is clear from our results that conservation agriculture needs to be targeted and adapted to specific biophysical conditions for improved impact

    Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?

    Get PDF
    The remote and hostile Southern Ocean is home to a diverse and rich community of life that thrives in an environment dominated by glaciations and strong currents. Marine biological studies in the region date back to the nineteenth century, but despite this long history of research, relatively little is known about the complex interactions between the highly seasonal physical environment and the species that inhabit the Southern Ocean. Oceanographically, the Southern Ocean is a major driver of global ocean circulation and plays a vital role in interacting with the deep water circulation in each of the Pacific, Atlantic, and Indian oceans. The Census of Antarctic Marine Life and the Scientific Committee on Antarctic Research Marine Biodiversity Information Network (SCAR-MarBIN) have strived to coordinate and unify the available scientific expertise and biodiversity data to improve our understanding of Southern Ocean biodiversity. Taxonomic lists for all marine species have been compiled to form the Register of Antarctic Marine Species, which currently includes over 8,200 species. SCAR-MarBIN has brought together over 1 million distribution records for Southern Ocean species, forming a baseline against which future change can be judged. The sample locations and numbers of known species from different regions were mapped and the depth distributions of benthic samples plotted. Our knowledge of the biodiversity of the Southern Ocean is largely determined by the relative inaccessibility of the region. Benthic sampling is largely restricted to the shelf; little is known about the fauna of the deep sea. The location of scientific bases heavily influences the distribution pattern of sample and observation data, and the logistical supply routes are the focus of much of the at-sea and pelagic work. Taxa such as mollusks and echinoderms are well represented within existing datasets with high numbers of georeferenced records. Other taxa, including the species-rich nematodes, are represented by just a handful of digital records

    Overweight status is associated with extensive signs of microvascular dysfunction and cardiovascular risk

    Get PDF
    The aim of this present study was to investigate if overweight individuals exhibit signs of vascular dysfunction associated with a high risk for cardiovascular disease (CVD). One hundred lean and 100 overweight participants were recruited for the present study. Retinal microvascular function was assessed using the Dynamic Retinal Vessel Analyser (DVA), and systemic macrovascular function by means of flow-mediated dilation (FMD). Investigations also included body composition, carotid intimal-media thickness (c-IMT), ambulatory blood pressure monitoring (BP), fasting plasma glucose, triglycerides (TG), cholesterol levels (HDL-C and LDL-C), and plasma von Willebrand factor (vWF). Overweight individuals presented with higher right and left c-IMT (p = 0.005 and p = 0.002, respectively), average 24-h BP values (all p <0.001), plasma glucose (p = 0.008), TG (p = 0.003), TG: HDL-C ratio (p = 0.010), and vWF levels (p = 0.004). Moreover, overweight individuals showed lower retinal arterial microvascular dilation (p = 0.039) and baseline-corrected flicker (bFR) responses (p = 0.022), as well as, prolonged dilation reaction time (RT, p = 0.047). These observations emphasise the importance of vascular screening and consideration of preventive interventions to decrease vascular risk in all individuals with adiposity above normal range

    Variation in Community Structure across Vertical Intertidal Stress Gradients: How Does It Compare with Horizontal Variation at Different Scales?

    Get PDF
    In rocky intertidal habitats, the pronounced increase in environmental stress from low to high elevations greatly affects community structure, that is, the combined measure of species identity and their relative abundance. Recent studies have shown that ecological variation also occurs along the coastline at a variety of spatial scales. Little is known, however, on how vertical variation compares with horizontal variation measured at increasing spatial scales (in terms of sampling interval). Because broad-scale processes can generate geographical patterns in community structure, we tested the hypothesis that vertical ecological variation is higher than fine-scale horizontal variation but lower than broad-scale horizontal variation. To test this prediction, we compared the variation in community structure across intertidal elevations on rocky shores of Helgoland Island with independent estimates of horizontal variation measured at the scale of patches (quadrats separated by 10s of cm), sites (quadrats separated by a few m), and shores (quadrats separated by 100s to 1000s of m). The multivariate analyses done on community structure supported our prediction. Specifically, vertical variation was significantly higher than patch- and site-scale horizontal variation but lower than shore-scale horizontal variation. Similar patterns were found for the variation in abundance of foundation taxa such as Fucus spp. and Mastocarpus stellatus, suggesting that the effects of these canopy-forming algae, known to function as ecosystem engineers, may explain part of the observed variability in community structure. Our findings suggest that broad-scale processes affecting species performance increase ecological variability relative to the pervasive fine-scale patchiness already described for marine coasts and the well known variation caused by vertical stress gradients. Our results also indicate that experimental research aiming to understand community structure on marine shores should benefit from applying a multi-scale approach

    Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function

    Get PDF
    BACKGROUND ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs) in evolutionarily conserved regions of the mammalian ATRX promoter. RESULTS We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. CONCLUSIONS Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.This work was supported by Department of Zoology research grants

    Cholangiocarcinoma

    Full text link
    Exploratory laparotomy is frequently used to diagnose, treat, or palliate cholangiocarcinoma although surgery is rarely curative. In light of newly developed percutaneous and endoscopic approaches to diagnosis and therapy, we reviewed our experience with 35 cases of cholangiocarcinoma diagnosed and treated at the University of Michigan Medical Center from 1979 to 1984. Percutaneous transhepatic cholangiography (PTCA) was performed in 34 cases of which only four were resectable. All 22 patients who had preoperative cholangiograms suggesting unresectability had confirmation of this at surgery. Surgical palliation was accomplished with a combination of internal and percutaneous drainage in most cases. Angiographic, cytologic, and laboratory data are presented. PTCA accurately predicted unresectability of cholangiocarcinoma and is superior to angiography in this respect. In patients with cholangiocarcinoma, percutaneous and endoscopic approaches offer alternatives to surgery for diagnosis and palliation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44406/1/10620_2005_Article_BF01798361.pd

    Molecular marks for epigenetic identification of developmental and cancer stem cells

    Get PDF
    Epigenetic regulations of genes by reversible methylation of DNA (at the carbon-5 of cytosine) and numerous reversible modifications of histones play important roles in normal physiology and development, and epigenetic deregulations are associated with developmental disorders and various disease states, including cancer. Stem cells have the capacity to self-renew indefinitely. Similar to stem cells, some malignant cells have the capacity to divide indefinitely and are referred to as cancer stem cells. In recent times, direct correlation between epigenetic modifications and reprogramming of stem cell and cancer stem cell is emerging. Major discoveries were made with investigations on reprogramming gene products, also known as master regulators of totipotency and inducer of pluoripotency, namely, OCT4, NANOG, cMYC, SOX2, Klf4, and LIN28. The challenge to induce pluripotency is the insertion of four reprogramming genes (Oct4, Sox2, Klf4, and c-Myc) into the genome. There are always risks of silencing of these genes by epigenetic modifications in the host cells, particularly, when introduced through retroviral techniques. In this contribution, we will discuss some of the major discoveries on epigenetic modifications within the chromatin of various genes associated with cancer progression and cancer stem cells in comparison to normal development of stem cell. These modifications may be considered as molecular signatures for predicting disorders of development and for identifying disease states

    Virtual genome walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence

    Get PDF
    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n. The software pipeline is available from https://github.com/LooseLab/iterassemble

    The footprint of continental-scale ocean currents on the biogeography of seaweeds

    Get PDF
    Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales.Thomas Wernberg, Mads S. Thomsen, Sean D. Connell, Bayden D. Russell, Jonathan M. Waters, Giuseppe C. Zuccarello, Gerald T. Kraft, Craig Sanderson, John A. West, Carlos F. D. Gurge
    corecore