239 research outputs found

    The U.S. National Climate Change Assessment: Do the Climate Models Project a Useful Picture of Regional Climate?

    Get PDF
    9 pages. Includes illustrations Dr. Roger A. Pielke, Sr., President of the American Association of State Climatologists, Colorado State Climatologist and Professor, Department of Atmospheric Science, Colorado State University From testimony presented to the House Subcommittee on Oversight and Investigations, July 25, 2002, and published in Colorado Water, April 2003, 15-19

    The U.S. National Climate Change Assessment: Do the Climate Models Project a Useful Picture of Regional Climate?

    Get PDF
    9 pages. Includes illustrations Dr. Roger A. Pielke, Sr., President of the American Association of State Climatologists, Colorado State Climatologist and Professor, Department of Atmospheric Science, Colorado State University From testimony presented to the House Subcommittee on Oversight and Investigations, July 25, 2002, and published in Colorado Water, April 2003, 15-19

    Influence of irrigation on diurnal mesoscale circulations: results from GRAINEX

    Get PDF

    Climate-Relevant Land Use and Land Cover Change Policies

    Get PDF
    Both observational and modeling studies clearly demonstrate that land-use and land-cover change (LULCC) play an important biogeophysical and biogeochemical role in the climate system from the landscape to regional and even continental scales. Without comprehensively considering these impacts, an adequate response to the threats posed by human intervention into the climate system will not be adequate. Public policy plays an important role in shaping local- to national-scale land-use practices. An array of national policies has been developed to influence the nature and spatial extent of LULCC. Observational evidence suggests that these policies, in addition to international trade treaties and protocols, have direct effects on LULCC and thus the climate system. However, these policies, agreements, and protocols fail to adequately recognize these impacts. To make these more effective and thus to minimize climatic impacts, we propose several recommendations: 1) translating international treaties and protocols into national policies and actions to ensure positive climate outcomes; 2) updating international protocols to reflect advancement in climate–LULCC science; 3) continuing to invest in the measurements, databases, reporting, and verification activities associated with LULCC and LULCC-relevant climate monitoring; and 4) reshaping Reducing Emissions from Deforestation and Forest Degradation+ (REDD+) to fully account for the multiscale biogeophysical and biogeochemical impacts of LULCC on the climate system

    Irrigation impacts on minimum and maximum surface moist enthalpy in the Central Great Plains of the USA

    Get PDF
    Agricultural activities notably alter weather and climate including near-surface heat content. However, past research primarily focused on dry bulb temperature without considering the role of water vapor (dew point temperature) on surface air heat content. When using dry bulb temperature trends to assess these changes, for example, not including concurrent trends in absolute humidity can lead to errors in the actual rate of warming or cooling. Here we examined minimum and maximum surface moist enthalpy, which can be expressed as “equivalent temperature.” Using hourly climate data in the Central Great Plains (Nebraska and Kansas) from 1990 to 2014, the averages and trends of minimum and maximum equivalent temperature (TE_min; TE_max) were analyzed to investigate the potential impacts of irrigation. During the growing season, TE_max averages were significantly higher in irrigated cropland sites compared to grassland sites. This can be explained by increased transpiration linked to irrigation. In addition, TE_max exhibits a decreasing trend in most sites over the growing season. However, the difference of the trends under irrigated croplands and grasslands is not statistically significant. A longer time series and additional surface energy flux experiments are still needed to better understand the relationships among temperature, energy, and land cover

    Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt

    Get PDF
    We present a conceptual synthesis of the impact that agricultural activity in India can have on land-atmosphere interactions through irrigation. We illustrate a “bottom up” approach to evaluate the effects of land use change on both physical processes and human vulnerability. We compared vapor fluxes (estimated evaporation and transpiration) from a pre-agricultural and a contemporary land cover and found that mean annual vapor fluxes have increased by 17% (340 km3) with a 7% increase (117 km3) in the wet season and a 55% increase (223 km3) in the dry season. Two thirds of this increase was attributed to irrigation, with groundwater-based irrigation contributing 14% and 35% of the vapor fluxes in the wet and dry seasons, respectively. The area averaged change in latent heat flux across India was estimated to be 9 Wm−2. The largest increases occurred where both cropland and irrigated lands were the predominant contemporary land uses

    Numerical Simulation of the 9-10 June 1972 Black Hills Storm Using CSU RAMS

    Get PDF
    Strong easterly flow of low-level moist air over the eastern slopes of the Black Hills on 9-10 June 1972 generated a storm system that produced a flash flood, devastating the area. Based on observations from this storm event, and also from the similar Big Thompson 1976 storm event, conceptual models have been developed to explain the unusually high precipitation efficiency. In this study, the Black Hills storm is simulated using the Colorado State University Regional Atmospheric Modeling System. Simulations with homogeneous and inhomogeneous initializations and different grid structures are presented. The conceptual models of storm structure proposed by previous studies are examined in light of the present simulations. Both homogeneous and inhomogeneous initialization results capture the intense nature of the storm, but the inhomogeneous simulation produced a precipitation pattern closer to the observed pattern. The simulations point to stationary tilted updrafts, with precipitation falling out to the rear as the preferred storm structure. Experiments with different grid structures point to the importance of removing the lateral boundaries far from the region of activity. Overall, simulation performance in capturing the observed behavior of the storm system was enhanced by use of inhomogeneous initialization

    Roles of atmospheric and land surface data in dynamic regional downscaling

    Get PDF
    In studies dealing with the impact of land use changes on atmospheric processes, a key methodological step is the validation of simulated current conditions. However, regions lacking detailed atmospheric and land use data provide limited information with which to accurately generate control simulations. In this situation, the difference between baseline control simulations and different land use change simulations can be quite different owing to the quality of the atmospheric and land use data sets. Using multiple simulations at the Monteverde cloud forest region of Costa Rica as an example, we show that when a regional climate model is used to study the effect of land use change, it can produce distinctly different results at regional scales, depending on the amount of data available to run the climate simulations. We show that for the specific case of land use change impact studies, the simulation results are very sensitive to the prescribed atmospheric information (e.g., lateral boundary conditions) compared to the land use (surface boundary) information
    corecore