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Roles of atmospheric and land surface data in dynamic regional

downscaling

Deepak K. Ray,1,2 Roger A. Pielke Sr.,3 Udaysankar S. Nair,4 and Dev Niyogi5

Received 8 April 2009; revised 8 October 2009; accepted 14 October 2009; published 4 March 2010.

[1] In studies dealing with the impact of land use changes on atmospheric processes, a
key methodological step is the validation of simulated current conditions. However,
regions lacking detailed atmospheric and land use data provide limited information with
which to accurately generate control simulations. In this situation, the difference between
baseline control simulations and different land use change simulations can be quite
different owing to the quality of the atmospheric and land use data sets. Using multiple
simulations at the Monteverde cloud forest region of Costa Rica as an example, we show
that when a regional climate model is used to study the effect of land use change, it
can produce distinctly different results at regional scales, depending on the amount of data
available to run the climate simulations. We show that for the specific case of land use
change impact studies, the simulation results are very sensitive to the prescribed
atmospheric information (e.g., lateral boundary conditions) compared to the land use
(surface boundary) information.

Citation: Ray, D. K., R. A. Pielke Sr., U. S. Nair, and D. Niyogi (2010), Roles of atmospheric and land surface data in dynamic

regional downscaling, J. Geophys. Res., 115, D05102, doi:10.1029/2009JD012218.

1. Introduction

[2] Land use change affects atmospheric properties and
processes such as surface temperature [Fall et al., 2009],
boundary layer processes [Niyogi et al., 1999], radiation
balance [Nair et al., 2007], convection [Pielke, 2001], meso-
scale circulations [Baidya Roy and Avissar, 2002], cloud
cover and properties [Ray et al., 2003, 2006a], atmospheric
dispersion [Wu et al., 2009] and precipitation [Marshall et al.,
2004; Ray et al., 2006b; Pielke et al., 2007; Douglas et al.,
2009; Niyogi et al., 2010; Kishtawal et al., 2010]. A key
methodological step in land use change studies has been to
first conduct baseline simulations using the current land use
and the initial and lateral boundary conditions. The latter is
usually provided from the global or regional reanalysis [e.g.,
Mesinger et al., 2006; Ray et al., 2009]. The baseline
simulations are then evaluated against independent observa-
tions. Follow-up simulations are then performed with
changed land use but retaining the initial conditions and the
atmospheric state for the lateral boundaries of the model
domain identical to those of the baseline simulations. The

differences (D) in model output (meteorological fields)
between the simulations are used to quantify the impacts of
land use conversion.
[3] The impacts of land use change on regional weather

or climate measured through differences have at least two
types of uncertainties or errors, besides the uncertainties
related to imperfect models: (1) errors due to insufficient
atmospheric information (uncertainty in input meteorologi-
cal data) at the initial state and for the lateral boundary
conditions (eAtm) and (2) errors due to uncertainty in the
land information for the current condition (eLand), such as
due to spatially incorrect land use types and/or inaccurate
leaf area indices.
[4] Usually, land use change studies have dealt with the

impact of converting pristine/forested land to current con-
ditions [e.g., Marshall et al., 2003; Ray et al., 2006a;
Douglas et al., 2009] and evaluated by taking differences
between meteorological fields such as air temperature,
cloud cover, and precipitation between the two model sim-
ulations (denoted as F and C in equation (1), respectively).
The impact of further land conversion/deforestation was
computed in such studies using equation (2) (denoted as C
for current and D for further deforestation in equation (2),
respectively),

DF!C ¼ C � Fð Þ; ð1Þ

DC!D ¼ D� Cð Þ; ð2Þ

where the arrows in DF!C and DC!D show change from F
to C and change from C to D, respectively. Differences
taken with equations (1) and (2), however, include errors
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associated with each simulation (e), that is, eF
T, eC

T, and eD
T

expressed as

F ¼ FT þ eTF ; ð3Þ

C ¼ CT þ eTC ; ð4Þ

D ¼ DT þ eTD; ð5Þ

where the terms with superscript ‘‘T’’ identify the true state.
The errors themselves are made up of an atmospheric (Atm),
land use (Land), and model physics part (M); that is,

eTF ¼ eF;Atm þ eF;Land þ eF;M ; ð6Þ

eTC ¼ eC;Atm þ eC;Land þ eC;M ; ð7Þ

eTD ¼ eD;Atm þ eD;Land þ eD;M : ð8Þ

[5] Since atmospheric information is of course not avail-
able for different landscape scenarios, it is generally not
possible to quantify the errors in the modeled atmospheric
states corresponding to the forested/pristine (eF,Atm) and
deforested/future (eD,Atm) states. Neither is the accurate
prediction of land cover for the future deforested land
cover state accurately possible and hence the errors asso-
ciated with the deforested/future land cover (eD,Land) are
unknown. The forested/pristine land cover can be simulated
but generally not validated [e.g., Ramankutty and Foley,
1999]. At higher spatial resolutions the spatial and temporal
reconstruction of historical land use has been found to be
only around 50% accurate even at nonfrontier regions [e.g.,
Ray and Pijanowski, 2010] and thus eF,Land are also gener-
ally unknown. Evaluation of the errors in model physics
was beyond the scope of the current study. Thus, eF

T and eD
T

cannot be estimated. The errors associated with the pre-
scription of the current atmospheric (eC,Atm) and land
use states (eC,Land) can, however, be estimated [Ray et al.,
2009].
[6] Scaling the model error terms eF,M, eC,M, and eD,M to

zero reduces eF
T, eC

T, and eD
T to the estimated error terms eF,

eC, and eD, respectively. Then noting the difficulty of
estimating eF and eD, substituting equations (3)–(5) into
equations (1) and (2), and rewriting gives

DF!C ¼ DT
F!C þ eC � 6 eF

0

; ð9Þ

DC!D ¼ DT
C!D þ 6 eD

0

�eC ; ð10Þ

where DT denotes the accurate estimation of land use
change impacts. Note that less accurate impact assessments
due to land use changes are more likely to occur in regions
with sparse atmospheric and land cover data and where the
impacts of eC are likely to be larger. Such regions could for

instance include areas where (1) regular radiosonde data are
not available and (2) good quality land use maps are not
available.
[7] The error term eC is unknown even when reviewing

results from previous studies over different regions [e.g.,
Pielke et al., 2007]. Moreover, there is confusion regarding
whether accurate land use or accurate atmospheric informa-
tion is more important for improving baseline simulations.
Recently, Ray et al. [2009] showed that eC,Atmwere generally
reduced when special radiosondes or additional meteorolog-
ical products are assimilated over data sparse regions when
conducting simulations using a type 1 dynamical-downscaling
approach. Type 1 dynamic downscaling refers to those
simulations that still retain significant information on their
initial conditions and also when real world observed data are
assimilated during the model integration. Type 2 down-
scaling, in contrast, refers to those regional model runs where
the initial conditions have been forgotten but the simulations
are still dependent on the lateral and bottom boundary con-
ditions. The value-added (skill) of type 1 must be equal to
or greater than type 2 since the insertion of initial condi-
tions provides a real-world constraint to the accuracy of the
regional model. In the type 1 approach as defined byCastro et
al. [2005], not only initial memory conditions are used but
also the model variables are continuously updated using data
assimilation from large-scale models such as the National
Centers for Environmental Prediction (NCEP) reanalysis
[Kalnay et al., 1996]. Other studies [e.g., Alfieri et al.,
2007; Ge et al., 2007; Alapaty et al., 2008] have demon-
strated that eC,Land can be reduced when updated satellite-
derived land use information is assimilated in modeling the
current conditions.
[8] Ray et al. [2009], however, showed that over the

Monteverde region of Costa Rica eC,Atm was more than an
order of magnitude larger than eC,Land using type 1 dynam-
ical downscaling in which data assimilation is used during
the model integration. They, however, did not investigate
the importance of the eC,Atm and/or eC,Land terms by com-
paring them to the signal being measured; that is, in
equations (11)–(14),

eC;Atm � DF!C ; ð11Þ

eC;Land � DF!C ; ð12Þ

eC;Atm � DC!D; ð13Þ

eC;Land � DC!D: ð14Þ

[9] This estimation becomes important because if either
eC,Atm, eC,Land or both are comparable to change impacts
themselves then previous land cover change impact studies
may have substantially underestimated or overestimated
the impacts on the atmospheric condition simply because
of eC,Atm, eC,Land, or both. These errors would be poten-
tially larger over data sparse regions and are the subject
of the current investigation. Our working hypothesis is
that the error terms in the left-hand side of any of the
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equations (11)–(14) might be large and even similar in
magnitude to the land use change impacts being simulated
(i.e., right-hand side of equations (11)–(14)).
[10] Note that eC,Atm is also likely to occur when a

regional climate model (RCM) is used to dynamically down-
scale current and future scenarios from a global climate
model (GCM) (type 2 downscaling in which the initial
memory is lost). Castro et al. [2005], for example, showed
that dynamical downscaling using a RCM does not increase
value beyond that of a GCM. Further, at a regional scale,
GCM-simulated temperature and precipitation have fre-
quently been found to be inconsistent with current observa-
tions (i.e., eC are often large). In hydrological studies where
large uncertainty in hydrographs result from eC in precipita-
tion, the observed precipitation is often scaled by the bias
between observations and GCM simulation for the current
climate and this bias is used to correct future GCM predic-
tions [Chiew and McMahon, 2002; Tucci et al., 2003; Scibek

and Allen, 2006]. As an analog, the RCM eC,Atm could
provide an estimate of likely inaccuracies from dynamically
downscaling RCM using GCM-simulated current and future
scenarios and thisD could be useful for societal applications
as well as for improving the model simulations/predictions
[Visbeck, 2008].

2. Study Location, Data, and Methodology

[11] To evaluate the errors stated in equations (11)–(14),
we performed seven, 14 day (1–14 March 2003) continuous
model integrations using the Regional Atmospheric Mod-
eling System (RAMS) [Pielke et al., 1992] over the study
region centered on the Monteverde cloud forest (10.25�N,
84.7�W) in Costa Rica (Figure 1). The study region was
originally covered with tropical wet and moist forests, but
by 1992 the forest cover lowland of Costa Rica was reduced
to 18% of the area of the original forest cover. The recent

Figure 1. Land use associated with the experiments: (a) forested condition, (b) updated current land use
satellite-derived data and expert corrections, (c) model default land use for the current condition, and
(d) future deforested scenario. Deforestation was assumed to proceed up to 1000 and 1400 m on the
Caribbean and Pacific slopes of the mountains, following Ray et al. [2006a]. The left maps are for the
outer coarser grid, and the black rectangles in them denote the location of the higher-resolution grid,
which is shown in full resolution on the right.
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average annual deforestation rate is 4.2% owing to the
relative ease of clearing land in the lowlands and drier
Pacific slopes [Ray et al., 2006a]. Much of the Pacific
slopes of the Cordillera de Tilarán, and the Cordillera de
Guanacaste were deforested earlier. Pre-Columbian inhab-
itants lived and farmed (with slash-and-burn techniques) in
all but the wettest habitats (R. O. Lawton, personal com-
munication, 2009), but accurate maps of the historical land
cover and changes are not available; that is, eF,Land cannot
be estimated as noted earlier with certainty. The models
were run with three land use conditions: pristine/forested
(Figure 1a), current (Figures 1b and 1c), and future/deforested
(Figure 1d) conditions using standard and special atmo-
spheric data sets to capture eC,Atm leading to six models.
Thus the experiment setup testing eC,Atm is a type 1 down-
scaling but since type 2 downscaling is necessarily less
accurate than type 1, the results also apply to that level of
downscaling. One additional simulation was conducted
using model default land use to capture eC,Land (Figure 1c).
[12] The cloud forests of Monteverde, Costa Rica, rely on

horizontal precipitation [Ray et al., 2006a] from clouds (i.e.,
the cloud base regularly intersects the topography and
immerses the forest with cloud water) along steep topo-
graphic gradients. This cloud immersion occurs because
the consistent northeasterly airflow associated with the
trade winds from the Caribbean Sea encounters the central
mountain ranges and is forced to orographic lift, leading
to condensation. This creates a unique environment that in
turn is responsible for the enormous biodiversity found here
[Pounds et al., 1999; Lawton et al., 2001]; the surface
boundary forcing associated with orographic lifting is thus
likely to be strong. Prior research [e.g., Lawton et al., 2001;
Nair et al., 2003; Ray et al., 2006a] found that land use
change in the upwind lowland areas leads to increased
cloud base height reducing horizontal precipitation. There-
fore eC,Atm (in equations (11) and (13)) was also evaluated
for the differences in cloud base height between simu-
lations C_SPECIAL_ATM and C_STANDARD_ATM

(Table 1) in addition to assessing the precipitation and
surface temperature differences. This can be represented as

eC;Atm ¼ CAtm � CT
Atm

) eC;Atm ¼
X

comparisons

� C STANDARD ATMweather � C SPECIAL ATMweatherð Þ:

ð15Þ

[13] The comparison of error eC,Atm with DF!C

(equation (11)) was then estimated by comparing eC,Atm
with the difference between C_STANDARD and
F_STANDARD (Table 1), the standard runs that are
generally expected. Similarly, the comparison eC,Atm with
DC!D was done by comparing eC,Atm with the difference
in meteorological variables between D_STANDARD and
C_STANDARD_ATM (Table 1).
[14] All the ‘‘SPECIAL_ATM’’ runs were identical to the

‘‘STANDARD’’ simulations with the exception that they
utilized 86 special radiosonde observations that were col-
lected during a special field campaign called the Land Use
Cloud Interaction Experiment (LUCIE) [Ray et al., 2009], in
addition to meteorology provided by the 1� NCEP reanalysis
[Kalnay et al., 1996], and the upper air and surface observa-
tions from the University Corporation for Atmospheric
Research (UCAR) used in the ‘‘STANDARD’’ simulations.
Barnes objective analysis using the special radiosonde obser-
vations provided additional real world constraints to the
‘‘SPECIAL_ATM’’ simulations. The ‘‘STANDARD’’ simu-
lations were thus similar to what would generally be used by
researchers at regions devoid of special radiosonde launches.
The special radiosondes were launched at 3 h interval over
paired forested and deforested sites from 0600 local time (LT)
to 1800 LT. While radiosondes were not launched over the
mountains note that orographic uplift was experienced by the
radiosondes and sampling over the mountains thus occurred.

Table 1. Experimentsa

Experiment Acronym
Special

Radiosondes
Updated Land

Cover Comment

eC,Atm Evaluation

C_SPECIAL_ATM Y Y Current conditions simulated using 86 special rawinsonde in addition
to UCAR data sets; updated land cover; MODIS observed LAI

C_STANDARD_ATM N Y Current conditions simulated without special rawinsondes and only
using UCAR data sets; updated land cover; MODIS observed LAI

F_STANDARD N - Forest conditions simulated without special rawinsondes and only
using UCAR data sets; MODIS observed LAI from current forests

F_SPECIAL Y - Forest conditions simulated using 86 special rawinsondes in addition
to UCAR data sets; MODIS observed LAI from current forests

D_STANDARD N - Deforested conditions simulated without special rawinsondes and only using UCAR
data sets; MODIS observed LAI from current forests and nonforest locations

D_SPECIAL Y - Deforested conditions simulated with 86 special rawinsondes in addition to UCAR
data sets; MODIS observed LAI from current forest and nonforest locations

eC,Land Evaluation

C_SPECIAL_ATM Y Y Same as above
C_STANDARD_LU Y N Current conditions simulated using 86 special rawinsonde in addition to UCAR

data sets; model default land cover information
F_SPECIAL Y - Same as above
D_SPECIAL Y - Same as above

aUCAR, University Corporation for Atmospheric Research; MODIS, Moderate Resolution Imaging Spectroradiometer; LAI, leaf area index.
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[15] Changes in the error fields from updated land cover
information (eC,Land) were computed by taking the differ-
ence between C_STANDARD_LU and C_SPECIAL_ATM
(Table 1) and then compared to the difference in meteorolog-
ical variables between C_STANDARD_LU and F_SPECIAL
(i.e., DF!C in equation (12)) and to the difference in
meteorological variables between D_SPECIAL and
C_STANDARD_LU (i.e., DC!D of equation (14)).
C_SPECIAL_ATM had satellite-derived updated land
cover [Hansen et al., 2000] (Figure 1b), whereas
C_STANDARD_LU had model default land cover infor-
mation (Figure 1c). All the eC,Land comparison simulations
utilized special atmospheric information, so the only
difference was in the land cover information in the
C_STANDARD_LU simulation.
[16] All the simulations had identical two telescopic

nested grid configurations (Figure 1) with 4 km and 1 km
grid spacing for the outer and inner nested grids, respec-
tively. In the vertical, a stretched grid that varied from 20 m
near the surface to 750 m higher up was used with the top at
24 km. We used a hybrid grid system in the vertical with
terrain following sigma z coordinates at lower atmospheric
levels blended to isentropic coordinates at 6 km. The lateral
boundaries were nudged with an exponentially decreasing
nudging strength and with a time scale of 900 s along five
grid points. Model runs without interior nudging are not
directly influenced by the landscape effect on the radio-
sondes. However, even for this situation the lateral bound-
ary conditions, of course, are influenced by the current
landscape from outside the model domain. Because of the
fine grid spacing, microphysical processes were explicitly
represented and the atmospheric radiative transfer scheme
of Harrington and Olsson [2001] was used. A deformation
scheme was used to represent horizontal diffusion, while
the vertical diffusion was parameterized using the Mellor
and Yamada [1982] scheme. The soil layer depth was
prescribed as 2.5 m and was spatially heterogeneous [Food
and Agriculture Organization, 1971]. Following Ray et al.
[2006a], the initial soil saturation prescribed in the simula-
tions varied from the observed values of 0.1 at the surface,
0.2 at 50 cm depth, to 0.3 at 1.0 m depth and linearly
increased to 0.8 at 2.5 m soil depth. This soil moisture
profile was prescribed for the forested, current, and defor-
ested simulation and is based on observations from the time
period of the model simulation. Our analysis of soil mois-
ture from forested and pasture sites showed that they both
had a nearly similar soil moisture profile (upper half meter).
The profile of deeper soil moisture was from field obser-

vations that showed stream flows at half meter depths or
lower in this region. Pasture grasses with shallow roots were
found generally stressed over the model domain whereas
trees had green leaves implying access to deeper soil
moisture. On the basis of these sets of observations, the
soil moisture was increased to higher values at greater
depths (where we did not have any measurements). Sea
surface temperature was prescribed following the Moderate
Resolution Imaging Spectroradiometer (MODIS) overpass
and had a regional average value of 300 K.

3. Results

3.1. Accuracy of the Current Models

[17] The simulations with special radiosondes and
updated land cover information are expected to have reduced
simulation errors (i.e., eC,Atm and eC,Land, respectively) as
compared to the control/standard. Using root mean square
error (RMSE) statistics,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Oi � Sið Þ2

n

vuuut
; ð16Þ

where Oi and Si are the observed and model-simulated
precipitation, respectively, precipitation comparisons at 92
locations over the entire outer simulation domain were
conducted. The total observed precipitation was 542.6 mm
for these stations. C_SPECIAL_ATM had a RMSE of
26.8 mmwhereas C_STANDARD_ATM had a larger RMSE
of 35.1 mm (Table 2) for the simulated time period clearly
showing the reduction in precipitation simulation errors as a
result of including special radiosondes in the simulations, as
expected. Thus, simulations not utilizing special radiosondes
at this location and over the time period simulated would
get an extra RMSE (i.e., extra eC,Atm) of 8.3 mm. Indeed,
this number will vary depending on the number of special
radiosondes used and true differences are of course not
possible to estimate; that is, we can only get better
estimates ofDF!C

T andDC!D
T and denoted them asD*F!C

andD*C!D, respectively, in the remainder of this manuscript.
[18] To eliminate the possibility that owing to the chaotic

nature of weather, this 2 week period produced the differ-
ences in RMSE between the C_SPECIAL_ATM and
C_STANDARD_ATM simulations, we first determined
the number of days either simulation had lower RMSE.
We found that C_SPECIAL_ATM had a lower RMSE on
67% of the days whereas C_STANDARD_ATM had a

Table 2. Average Values Associated With the Experimentsa

Experiment
Acronym

RMSE Precipitation
at 92 Rain Gauge
Locations (mm)

Average Precipitation
at 92 Rain Gauge
Locations (mm)

Outer Domain Total
Average Precipitation

(mm)

Inner Domain Total
Average Precipitation

(mm)

Inner Domain 2 m
Air Temperature
at 1400 LT (�C)

Inner Domain
Cloud Base Heights
at 1400 LT (m)

F_SPECIAL NA 21.6 41.7 104.9 17.2 1810.6
F_STANDARD NA 22.3 31.6 29.1 20.6 1939.3
C_SPECIAL_ATM 26.8 20.4 41.9 99.9 18.7 1978.2
C_STANDARD_ATM 35.1 26.0 33.3 46.1 23.0 2389.8
D_SPECIAL NA 18.2 41.7 90.9 19.1 2079.2
D_STANDARD NA 31.7 35.7 53.1 23.4 2450.0
C_STANDARD_LU 29.8 20.4 40.7 85.7 19.0 2126.4

aNA stands for ‘‘not applicable,’’ which refers to the fact that the forest and deforested scenario simulation cannot be validated against rain gauge
measurements.
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lower RMSE for the remaining 33% of the days. Second,
we also divided the simulation period into two halves and
computed the RMSE for each half to determine whether
results were consistent. We found that in the first half, the
errors were lower for both the simulations compared to the
second half. C_SPECIAL_ATM, however, had a lower
RMSE than C_STANDARD_ATM for both periods, im-
plying that this was not an artifact of weather events. The
RMSE values were 11.1 mm and 15.8 mm for the first and
second half for C_SPECIAL_ATMand 14.7mm and 23.3mm
for C_STANDARD_ATM, that is, consistent with higher
RMSE values for the ‘‘STANDARD’’ simulations.
[19] C_STANDARD_LU (simulation with model default

land cover but special radiosondes) had RMSE of 29.8 mm
(Table 2), which in comparison to the error of C_SPECIAL_
ATM is slightly higher but it is considerably less than
C_STANDARD_ATM. This suggests that uncertainties in
the atmospheric information impact the simulations more
than the uncertainties in the land cover (for our experimental
setup).
[20] The average total precipitation difference between

C_STANDARD_ATM and C_SPECIAL_ATM at the 92
observation locations was 5.5 mm (27.5% difference); that
is, simulations with standard atmospheric data sets over-
estimated precipitation by 5.5 mm on average. The average
DF!C and DC!D were 3.7 mm and 5.7 mm, respectively,
implying deforestation increased precipitation (contrary to
expectation here) and further deforestation up to a certain
point could create mesoscale heterogeneities which would
further increase precipitation, again contrary to expectation
at this study site [see Lawton et al., 2001; Nair et al., 2003;
Ray et al., 2006a]. Note that other studies such as those in
the Sahel have reported an opposite effect [Taylor and Ellis,
2006], where the higher sensible heat flux expected in a
deforested environment forces faster, deeper boundary layer
growth, making it more likely, not less, that deep convection
will occur when there is a larger-scale source of water vapor
[Niyogi et al., 2002]. This results in more precipitation. Ray

et al. [2003], in another dry region of southwestern Australia,
found fewer cumulus clouds forming climatologically over
regions without vegetation cover in the dry season. Differ-
ences between simulations utilizing special radiosondes,
that is, D*F!C and D*C!D, were �1.2 mm and �2.2 mm.
Both these are consistent with general expectations at this
study site but opposite to the simulation results that used
standard atmospheric information showing that utilizing or
not utilizing special radiosondes can completely change
results.
[21] The average total precipitation difference between

C_STANDARD_LU and C_SPECIAL_ATM at the 92
observation locations was �0.05 mm, which is insignificant
compared to the difference due to atmospheric information.
Average DF!C and DC!D (i.e., C_STANDARD_LU –
F_SPECIAL and D_SPECIAL – C_STANDARD_LU,
respectively) were �1.2 mm and �2.2 mm, respectively.
Again these results are comparable to D*F!C and D*C!D

which shows that utilization of the model default current
land cover would have provided similar results at these
92 validation locations.

3.2. Land Use Change Impacts on Meteorological
Variables Compared With Differences Between Current
‘‘STANDARD’’ and ‘‘SPECIAL’’ Simulations

[22] Models are typically used to simulate the meteoro-
logical impacts of land use changes over remote regions
that are presumed sensitive to meteorological changes due
to the land use changes. The inner model domain in this
study is one such region. The lack of detailed atmospheric
and land cover information could result in uncertainty in the
simulated meteorological fields from both the errors in
input atmospheric (eC,Atm) and land use (eC,Land) informa-
tion. In sections 3.2.1–3.2.3 we discuss the magnitude of
these errors and compare them with the meteorological
impacts due to land use changes. Large errors could lead
to incorrect conclusions regarding the impacts of land use
changes on the meteorology.

Table 3. Estimated eC,Atm, DF!C, DC!D, D*F!C, and D*C!D

Variable eC,Atm DF!C D*F!C DC!D D*C!D

Averaged Over Remote Inner Domain
Total precipitation (mm) �53.8 17.0 �5.0 7.0 �9.0
2 m air temperature (�C), 1400 LT 4.3 2.4 1.5 0.4 0.4
2 m air temperature (�C), 1500 LT 4.1 2.1 1.4 0.4 0.5
2 m air temperature (�C), 1600 LT 3.8 1.8 1.1 0.3 0.5
Cloud base height (m), 1400 LT 411.6 450.4 167.6 60.2 101.0
Cloud base height (m), 1500 LT 449.2 249.0 120.6 128.1 163.1
Cloud base height (m), 1600 LT 207.4 151.9 181.8 185.3 156.9

Averaged Over Remnant Forest Locations
Total precipitation (mm) �118.4 28.8 4.7 19.6 �23.6
2 m air temperature (�C), 1400 LT 2.9 0.3 0.2 0.4 0.2
2 m air temperature (�C), 1500 LT 2.7 0.3 0.2 0.4 0.2
2 m air temperature (�C), 1600 LT 2.4 0.1 0.0 0.3 0.2
Cloud base height (m), 1400 LT 751.0 461.0 40.9 97.8 163.1
Cloud base height (m), 1500 LT 777.7 320.5 96.0 109.2 251.1
Cloud base height (m), 1600 LT 534.3 188.2 59.1 180.4 258.6

Averaged Over Deforested Locations
Total precipitation (mm) �41.8 14.9 �6.9 4.7 �6.3
2 m air temperature (�C), 1400 LT 4.6 2.9 1.8 0.4 0.5
2 m air temperature (�C), 1500 LT 4.3 2.5 1.7 0.4 0.5
2 m air temperature (�C), 1600 LT 4.1 2.2 1.3 0.4 0.5
Cloud base height (m), 1400 LT 354.7 447.4 184.6 52.5 92.2
Cloud base height (m), 1500 LT 382.2 236.3 129.2 133.5 146.7
Cloud base height (m), 1600 LT 152.2 132.6 205.4 189.9 129.9
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3.2.1. Precipitation Comparisons
[23] The C_SPECIAL_ATM model simulated an average

of 99.9 mm of precipitation (standard error (SE) = 2.2 mm;
SE = sffiffiffi

N
p ) for the high-resolution (grid spacing = 1 km)

remote inner domain whereas the C_STANDARD_ATM
model simulated 46.0 mm (SE = 0.8 mm) of precipitation
(Table 2). The differences were statistically significant at
a = 0.05 using a two-tailed t-test with unequal variances
(heteroscedastic t-test). For the outer coarser grid land areas
(grid spacing = 4 km) similarly, C_SPECIAL_ATM model
simulated an average of 41.9 mm (SE = 1.8 mm) precipita-
tion and C_STANDARD_ATM model simulated 33.3 mm
(SE = 1.0 mm) precipitation and the differences were
statistically significant at a = 0.05 using a two-tailed t-test
with unequal variances assumed. eC,Atm for precipitation
would thus be �53.8 mm for the inner domain (Table 3)
whereas for the outer coarser domain it would have been
�8.5 mm. The effect of deforestation simulated using
standard atmospheric data sets for the inner domain (i.e.,
DF!C and DC!D) was 17.1 mm and 7.0 mm, respectively.
Both results are statistically significant at a = 0.05 using a
one-tailed t-test with unequal variances. On the contrary,
the effect of deforestation simulated using special atmo-
spheric data sets (i.e., D*F!C and D*C!D) were �5.0 mm
and�9.0 mm, respectively, and these were also statistically
significant at a = 0.05. Thus, simulations using standard
atmospheric data sets suggest that deforestation increases

precipitation whereas simulations using special radio-
sondes suggest that deforestation leads to precipitation
decreases, and both results are statistically significant.
[24] Spatially the ‘‘SPECIAL’’ and ‘‘STANDARD’’ runs

gave strikingly different precipitation patterns over the
high-resolution domain (Figure 2). In all the simulations,
precipitation increased with elevation and on the windward
Atlantic slopes. However, in the ‘‘SPECIAL’’ simulations,
precipitation decreased with deforestation in the montane
regions, while for the ‘‘STANDARD’’ runs they increased
with deforestation. The simulated precipitation amount was
also very different. ‘‘SPECIAL’’ runs simulated 250 mm to
greater than 450 mm (increasing with elevation) on the
windward Atlantic slopes, whereas the ‘‘STANDARD’’
runs simulated 100 mm to 300 mm (increasing with
elevation) of precipitation. Over the outer model domain
a similar pattern of precipitation differences (Figure 3)
between the ‘‘SPECIAL’’ and ‘‘STANDARD’’ simulations
for forested, current, and deforested land use scenarios
were simulated. Precipitation increased with elevation over
the windward Atlantic slopes of the mountain ranges that
divide Costa Rica into Atlantic and Pacific sides for both
types of simulations, but for the ‘‘STANDARD’’ runs,
precipitation increased with deforestation and for the
‘‘SPECIAL’’ runs they decreased with deforestation. Note
that the C_SPECIAL_ATM run was shown to simulate pre-
cipitation more accurately with lower RMSE of 26.8 mm

Figure 2. Simulated precipitation (mm) over the inner 1 km spatial resolution domain over the
simulation period for six different model runs to assess the importance of special radiosondes:
(a) F_SPECIAL run, (b) F_STANDARD run, (c) C_SPECIAL_ATM run, (d) C_STANDARD_ATM run,
(e) D_SPECIAL run, and (f) D_STANDARD run.
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whereas C_STANDARD_ATM had a larger RMSE of
35.1 mm in section 3.1. Thus, a decrease in precipitation
(D*F!C and D*C!D) with deforestation is likely to be
accurate for this location. Indeed previous studies have
shown decrease in cloud cover with deforestation over this
region [Lawton et al., 2001; Nair et al., 2003; Ray et al.,
2006a].
[25] Over the common remnant forest locations (i.e.,

those locations that are forested even in the deforested simu-
lation scenario), and deforested locations (locations that are
deforested in the deforestation land use scenario), precipitation
eC,Atm, DF!C and DC!D was generally along similar lines
of increases with deforestation for ‘‘STANDARD’’ model
runs and decreases in precipitation with deforestation for
‘‘SPECIAL’’ runs (Table 3).
3.2.2. Surface Air Temperature Comparisons
[26] The 1400 LT averaged 2 m air temperature was

18.7�C for simulations using C_SPECIAL_ATM model
but 23.0�C using the C_STANDARD_ATM model giving
a eC,Atm of 4.3�C for the high-resolution inner domain.
DF!C was 2.4�C and DC!D was 0.4�C, implying that
deforestation increases 2 m air temperature and additional
deforestation further increases the 2 m air temperature.
Results from simulations that used the special radiosondes
were correspondingly 1.5�C and 0.4�C. Over remnant forest
locations the results were similar but the magnitude of the
values was lower. eC,Atm was 2.9, DF!C was 0.3 but DF!C

was 0.2; DC!D was 0.4 but D*C!D was 0.2. Over the

projected future locations of deforestation, the values were
higher but results were similar. Similar results were also
found at the other two peak daytime periods of 1500 and
1600 LT (Table 3).
[27] The diurnal variations of temperature averaged over

the simulation period for the high-resolution inner domain
show that during early morning and late evening hours the
‘‘STANDARD’’ and ‘‘SPECIAL’’ simulations varied by 1�C
to 3�C between any two land use conditions (Figure 4). For
example the ‘‘STANDARD’’ forested simulations had higher
2 m air temperatures than the ‘‘SPECIAL’’ forested simula-
tion. The same was true for the current land use and for the
projected future land use condition. However, during peak
daytime hours the differences were as large as 6�C between
identical land use conditions simply owing to whether the
simulations used special radiosondes or not. Values were
always higher for the ‘‘STANDARD’’ runs. Over the remnant
cloud forest regions ‘‘STANDARD’’ runs simulated higher
2 m air temperatures for all three land use conditions com-
pared to the ‘‘SPECIAL’’ runs that had lower 2 m air
temperature for all three land use conditions. Over deforested
regions the results were similar to the results found from
simulations for the entire domain. The diurnal temperature
variations show that while conclusions from ‘‘STANDARD’’
simulations would be similar to those simulations using
special radiosondes, the actual magnitude of the temperature
associated with each land use category would be quite
different. In general, the ‘‘STANDARD’’ runs would suggest

Figure 3. Simulated precipitation (mm) over the outer grid over the simulation period for six different
models to estimate the importance of special radiosondes: (a) F_SPECIAL run, (b) F_STANDARD run,
(c) C_SPECIAL_ATM run, (d) C_STANDARD_ATM run, (e) D_SPECIAL run, and (f) D_STANDARD
run.
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that 2 m air temperatures are higher for each land use
condition compared to the corresponding ‘‘SPECIAL’’
simulations.
3.2.3. Cloud Base Height Comparisons
[28] We computed cloud base height statistics because

previous studies in this region concluded that land use
changes [e.g., Lawton et al., 2001; Nair et al., 2003; Ray
et al., 2006a] or sea surface temperature rise [e.g., Pounds et
al., 1999; Still et al., 1999; Karmalkar et al., 2008] can
impact cloud base heights and the sustainability of the
endemic biodiversity at Monteverde. Our results show that
cloud base heights computed using a regional-scale model
would be highly sensitive to atmospheric information pro-
vided to it (Table 3). At 1500 LT for instance, eC,Atm was
449.2 m. DF!C and D*F!C were 249 m and 120.6 m. Note
that the differences taken in both these cases are the same,
that is, the difference in cloud base heights between current
and forested land use conditions. The only difference being
atmospheric information suggests that an additional cloud
base height increase of 128.3 m would have been predicted
simply from the usage of the ‘‘STANDARD’’ atmospheric
information. Similarly,DC!D andD*C!Dwere 128.1 m and
163.1 m at 1500 LT. Thus the diurnal variations in cloud base

height over the remnant forest locations are also sensitive to
the type of atmospheric information used in the simulations.
‘‘STANDARD’’ atmospheric information suggests cloud
base height of even 2400 m at peak day time for current
conditions. On the contrary, C_SPECIAL_ATM simulations
suggest an increase in cloud base height from around 1600 m
(corresponding to forested conditions) to peak values of
around 1800 m (for current conditions). This corresponds
well with the observed anuran population crashes, an increase
in the upper elevation of bird ranges [Lawton et al., 2001] at
the Monteverde cloud forest preserve. On the contrary
‘‘STANDARD’’ runs suggest that cloud base heights have
risen to above 1800 m between 1000 LT and 1700 LT;
the entire peak daytime hours. Thus, according to the
‘‘STANDARD’’ simulations, the cloud bases generally did
not intersect the mountains for the entire simulation period.
This is not true and cloud base height observations from
Monteverde [Welch et al., 2008; Nair et al., 2008] suggests
that cloud base heights at 1030 LT varied between 1300 m
to 1675 m for the identical time frame (1–15 March 2003)
which is comparable to the approximately 1500 m average
cloud base height simulated over the identical region using
special radiosondes. The spatial variations of cloud base

Figure 4. Impact of atmospheric information on simulating (top) 2 m air temperature and (bottom)
cloud base heights. Solid lines are associated with simulations done with special radiosondes, whereas
dashed lines are for simulations done with standard atmospheric information. Green denotes pristine/
forest conditions, black denotes current conditions, and red denotes future deforested conditions. The
error bars are associated with the standard error in each case.
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heights at 1400 LT are shown in Figure 5. At other times
(such as 1500 LT and 1600 LT) the results were similar.
Cloud base heights increase with elevation as can be
expected, but what is interesting is that (1) ‘‘STANDARD’’
simulations had fewer low-level clouds (clouds with bases
at 2.75 km and below) for all three land use scenarios and
(2) cloud base heights simulated over the montane regions
tend to be at higher elevations and often more than the
height of these mountains for the current land use, signify-
ing that these regions must already be cloud-free. Using a
higher cloud base height criteria, results were similar; that
is, ‘‘STANDARD’’ simulations had fewer low-level clouds.
This is not true as found byWelch et al. [2008] and Nair et
al. [2008], signifying that the inaccuracies that occur in
dynamic downscaling can provide misleading results
unless RCMs are provided additional information such as
provided in this study from special radiosondes.

3.3. The eC,Land Compared With D*F!C and D*C!D

Over Remote Cloud Forests

[29] Precipitation eC,Land was �14.3 mm, whereas DF!C

and DC!D were �19.3 mm and 5.3 mm over the entire
inner remote domain, respectively. These values are com-
parable to D*F!C and D*C!D indicating lower gains in
simulation accuracy by improving the current land cover
information compared to improvements from additional

atmospheric information. Over cloud forests these values
were �40.1 mm, �35.4 mm, and 16.5 mm. The 2 m air
temperature and cloud base height results were also along
similar lines and not discussed further here. The question
then arises regarding the relative role of uncertainties in the
land use versus the atmospheric information. We used
average wind speed variation with height (Figure 6) to
estimate mass flushing rates (H. von Storch, personal com-
munication, 2007). Strong winds cause large flushing rates
while weak winds cause weak flushing rates and increase the
residence time for land-atmosphere interactions. The mem-
ory of the initial conditions also decays more quickly for
strong flushing rates. However, we found no such reason for
the smaller importance of the land surface condition. We
found that wind speed increased from around 5 m s�1 at low
levels (on the order of 100 m) to around 10 m s�1 at the trade
wind inversion level at approximately 3.5 km and then to
15 m s�1 higher up for the outer grid. Since the outer grid had
a length of 400 km, a 5 m s�1 wind would have taken roughly
1 day to travel the entire length of the domain from the
Atlantic coast to the Pacific coast providing sufficient time
for exchanges with the land surface. Winds at the trade wind
inversion level of course traveled faster andwould have taken
around 12 h to traverse the simulation domain. Thus, our
results suggest that the quantitative agreement of regional
weather model results with observations is less dependent on

Figure 5. Average cloud base heights simulated over the inner high-resolution 1 km grid (m) (see
Figure 1 for the geographic location of this inner grid) over the simulation period for six different models to
estimate the importance of special radiosondes at 1400 LT: (a) F_SPECIAL run, (b) F_STANDARD run,
(c) C_SPECIAL_ATM run, (d) C_STANDARD_ATM run, (e) D_SPECIAL run, and (f) D_STANDARD
run. Clouds with bases above 3 km were not plotted.
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uncertainties in the land surface data than those in the
atmospheric data for wind speeds typical of trade wind
regimes.

4. Conclusions

[30] This analysis suggests that studies that deal with
regional atmospheric effects of land use changes may have
unknown uncertainties due to inaccuracies in their baseline
simulations. We show that for the region around the
Monteverde cloud forests in Costa Rica, simulations utiliz-
ing standard atmospheric data sets suggest increases in
precipitation with lowland deforestation. However, with
the added spatial resolution that is provided by special
radiosondes, the results are just the opposite. The simu-
lated 2 m air temperature and cloud base heights are also
substantially different depending on the quality of atmo-
spheric information provided to the model simulations.
Thus the conclusions obtained in land cover change studies
can be quite different because of the quality of atmospheric
information provided to regional models.

[31] Our results are relevant to the four types of dynamic
downscaling reported by Castro et al. [2005]. The time
period of integration in this study corresponds to a type 1
downscaling in which we initialized our RCM with ob-
served data and integrated it forward using data assimilation
of observed data and lateral boundary conditions from the
NCEP reanalysis. Our result showed that dynamic down-
scaling can provide misleading results unless RCMs are
provided additional information. The results are also appli-
cable to type 2 downscaling because the value-added (skill)
of type 1 must be equal to or greater than type 2 since the
insertion of initial conditions and continuous data assimila-
tion provides a real-world constraint to the accuracy of the
regional model. In fact, nudging is required in order to
prevent the regional model from drifting away from the real
world [Rockel et al., 2008].
[32] We found eC,Atm associated with precipitation (left-

hand side of equations (11) and (13)) for the inner high-
resolution domain was �53.6 mm. This was comparable in
magnitude to the effects of deforestation (i.e., the signal being
measured) using standard atmospheric data sets (i.e., DF!C

and DC!D, the right-hand side of equations (11) and (13),

Figure 6. Variation of domain-averaged wind speed with height for all special atmosphere simulations
for outer coarser domain and for the entire simulation time. The initial increase of wind speed with height
decreases at around 3.5 km, and then it rapidly increases. This is associated with the trade wind inversion
found in this region.
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respectively) and was 17.1 mm and 7.0 mm. Moreover, the
impacts on precipitation due to deforestation simulated using
the special atmospheric data sets (i.e., D*F!C and D*C!D)
were �5.1 mm and �9.0 mm, respectively, which was
opposite in sign to those simulated using the ‘‘STANDARD’’
data set thereby suggesting that simulations using
‘‘STANDARD’’ atmospheric data sets are not only incor-
rect but can also provide misleading results; in this case
that deforestation leads to increases in precipitation. The
‘‘STANDARD’’ atmospheric simulations were however
wetter at the gauges but drier overall.
[33] The simulated diurnal variation in temperature by the

‘‘STANDARD’’ and ‘‘SPECIAL’’ simulations both show
that deforestation leads to increases in 2 m air temperature.
However, the ‘‘STANDARD’’ runs suggest significantly
higher temperatures in comparison to the ‘‘SPECIAL’’ runs.
Similarly, cloud base heights were significantly higher
during the peak daytime for the ‘‘STANDARD’’ simula-
tions and not found in actual observations for identical times
[Welch et al., 2008; Nair et al., 2008]. The mass flushing
similarly was higher for the ‘‘STANDARD’’ simulations
compared to the ‘‘SPECIAL’’ simulations.
[34] Our results show that RCMs are strongly dependent

on the lateral boundary conditions (and nudging) from the
GCM (or reanalysis). When the RCMs are integrated far
enough into the future such that their initial values are for-
gotten, as shown by Castro et al. [2005] and Rockel et al.
[2008], the RCMs cannot add value (skill) with respect to
atmospheric features that are resolved within the parent GCM
(or reanalysis). Also, the regional climate results are so
strongly controlled by the larger scale that they cannot correct
for errors that occur within the larger-scale global climate
prediction [Chase et al., 2003; Castro et al., 2005; Lo et al.,
2008]. What we show in this paper is that the accuracy of
even type 1 downscaling is degraded without sufficient data
on the regional atmospheric structure and these have im-
portant implications for land use change impact studies. The
findings have implications not only for land cover change
studies but also for future climate change predictions such as
planned in the Fifth IPCC assessments, since type 3 and 4
downscaling [Castro et al., 2005] must have even less value-
added (skill) than type 1 and 2 downscaling.

[35] Acknowledgments. R. A. Pielke Sr. was supported in this study
through the University of Colorado in Boulder (CIRES/ATOC). D. Niyogi
benefited in part from the DOE ARM Program (08ER64674; Rick Petty
and Kiran Alapaty), NSF CAREER-0847472 (Liming Zhou and J. Fein),
and NASATerrestrial Hydrology Program (Jared Entin). U.S. Nair was sup-
ported in this study by the National Aeronautics and Space Administration
(NASA) grant NNS06AA588. We thank Dallas Staley for editorial support.
John W. Nielson-Gammon and an anonymous reviewer are acknowledged
for helpful comments that led to a significant improvement in the quality
of our manuscript.

References
Alapaty, K., D. Niyogi, F. Chen, P. Pyle, A. Chandrasekar, and N. Seaman
(2008), Development of the flux-adjusting surface data assimilation sys-
tem for mesoscale models, J. Appl. Meteorol. Climatol., 47, 2331–2350,
doi:10.1175/2008JAMC1831.1.

Alfieri, J., D. S. Niyogi, M. A. LeMone, F. Chen, and S. Fall (2007), A
simple reclassification method for correcting uncertainty in land use/land
cover data sets used with land surface models, Pure Appl. Geophys., 164,
1789–1809, doi:10.1007/s00024-007-0241-4.

Baidya Roy, S., and R. Avissar (2002), Impact of land use/land cover
change on regional hydrometeorology in Amazonia, J. Geophys. Res.,
107(D20), 8037, doi:10.1029/2000JD000266.

Castro, C. L., R. A. Pielke Sr., and G. Leoncini (2005), Dynamical down-
scaling: Assessment of value retained and added using the Regional
Atmospheric Modeling System (RAMS), J. Geophys. Res., 110,
D05108, doi:10.1029/2004JD004721.

Chase, T. N., R. A. Pielke Sr., and C. Castro (2003), Are present day
climate simulations accurate enough for reliable regional downscaling?,
Water Resour. Update, 124, 26–34.

Chiew, F. H. S., and T. A. McMahon (2002), Modelling the impacts of
climate change on Australian streamflow, Hydrol. Processes, 16(6),
1235–1245, doi:10.1002/hyp.1059.

Douglas, E. M., A. Beltrán-Przekurat, D. S. Niyogi, R. A. Pielke Sr., and
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